
12WEB SERVICE
MANUAL

Version 12.0.0

Copyright (c) 2006-2024 RealObjects

PDFreactor is a registered trademark of RealObjects GmbH.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

TABLE OF CONTENTS
1. Installation ... 7

1.1. The PDFreactor Web Service .. 7
1.1.1. PDFreactor Web Service Setup on Windows ... 8
1.1.2. PDFreactor Web Service Setup on Linux / Unix .. 8
1.1.3. PDFreactor Web Service Setup on macOS ... 9

1.2. The PDFreactor Preview Application... 9
1.3. Client Requirements.. 9

2. Integration.. 10
2.1. Basics... 10

2.1.1. Creating a PDFreactor Instance ... 10
2.1.2. Configuring the Conversion .. 10
2.1.3. Specifying the Input Document .. 11
2.1.4. Starting the Conversion ... 12
2.1.5. Processing the Result .. 12

2.2. Memory .. 14
2.2.1. Parallel Conversions... 15
2.2.2. Extensive Conversions .. 15
2.2.3. Analyzing Memory Consumption ... 15

2.3. Using the PDFreactor Web Service ... 15
2.3.1. Synchronous Conversions .. 16
2.3.2. Asynchronous Conversions .. 17
2.3.3. Streaming Conversions.. 18
2.3.4. Using the REST API.. 18
2.3.5. Asset Packages ... 24
2.3.6. Prioritizing Jobs ... 25
2.3.7. Downloading Document Bundles... 25
2.3.8. Using a Client ... 26
2.3.9. Custom Headers and Cookies.. 32
2.3.10. Web Service Configuration ... 32
2.3.11. Accessing the Log .. 34
2.3.12. Cluster Configuration ... 34
2.3.13. Server Parameters .. 35
2.3.14. Callbacks .. 37
2.3.15. Monitoring... 37
2.3.16. JSON Configuration Files .. 38

2.4. API Comparison ... 39
2.4.1. What API Method Should I Use?.. 40

2.5. Logging .. 41
2.5.1. Conversion Name.. 42
2.5.2. Log Capacity .. 42

2.6. License Key .. 42
2.6.1. Evaluation Mode .. 42
2.6.2. Receiving a License Key.. 42
2.6.3. Setting the License Key ... 43
2.6.4. Setting the License Key in the Web Service .. 43

2.7. Observing Document Content... 43

www.pdfreactor.com

Table of Contents

1

2.7.1. Exceeding Content.. 44
2.7.2. Missing Resources.. 44
2.7.3. Connections ... 45

2.8. Error Policies .. 45
2.9. Limiting Conversion Times .. 46
2.10. Development and Debugging Tools .. 46

2.10.1. Debug Settings .. 46
2.10.2. Inspectable Documents ... 48

2.11. Docker Configuration.. 49
3. Security .. 51

3.1. SSL Certificate Validation .. 51
3.2. Connection Security .. 51

3.2.1. Trusted and Untrusted Contexts .. 51
3.2.2. Automatic Redirects ... 52
3.2.3. Connection Rules .. 52
3.2.4. Default Security Behavior .. 55
3.2.5. Non-local File URLs .. 57

3.3. External XML Parser Resources .. 57
3.4. Controlling Client Access... 58

3.4.1. Restricting Service Access.. 58
3.4.2. Restricting API Access... 58
3.4.3. Enabling Administrative Access... 59

3.5. Hiding Version Information .. 59
4. Input Formats.. 60

4.1. HTML + CSS ... 60
4.1.1. Legacy XHTML .. 60
4.1.2. HTML + JavaScript.. 61

4.2. XML + CSS.. 61
4.2.1. XML + XSLT ... 61

4.3. Encoding.. 62
4.4. CSS Validation ... 62
4.5. Quirks Mode.. 63
4.6. Resource Loading ... 64

4.6.1. Network Settings ... 64
4.6.2. URL Rewrites ... 67

4.7. Additional Resources.. 67
4.7.1. User Style Sheets.. 68
4.7.2. Integration Style Sheets... 68
4.7.3. User Scripts .. 68
4.7.4. XSLT Style Sheets .. 68

4.8. Colors... 68
4.8.1. Color Keywords ... 68
4.8.2. RGB Colors... 69
4.8.3. RGBA Colors.. 69
4.8.4. CMYK Colors.. 69
4.8.5. HSL Colors ... 70
4.8.6. Spot Colors ... 70

4.9. Compound Formats .. 70
4.9.1. Images ... 70
4.9.2. SVG .. 71
4.9.3. MathML.. 73
4.9.4. Barcodes ... 73
4.9.5. Object and Embed .. 77

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

Table of Contents

2

4.9.6. Form Controls .. 77
4.9.7. iframes ... 78
4.9.8. Canvas Element .. 80
4.9.9. PDF Pages as Images .. 81
4.9.10. Filters and Shadows ... 81

4.10. JavaScript ... 82
4.10.1. Limitations of Browser-Like Behavior ... 83
4.10.2. JavaScript Engines ... 83
4.10.3. Third-Party JavaScript Libraries and Frameworks ... 83
4.10.4. Proprietary Access to Layout Information.. 84
4.10.5. PDF Output Options ... 85
4.10.6. Exporting Data From JavaScript .. 86
4.10.7. Timeouts and Limits ... 87
4.10.8. awesomizr.js .. 89

5. Output Formats... 90
5.1. PDF Output ... 90

5.1.1. Bookmarks.. 90
5.1.2. Links... 91
5.1.3. Metadata ... 92
5.1.4. Interactive PDF Forms ... 93
5.1.5. Tagged PDF ... 95
5.1.6. PDF/A Conformance... 96
5.1.7. PDF/UA Conformance ... 97
5.1.8. PDF/X Conformance .. 98
5.1.9. ICC Profiles and Output Intents.. 99
5.1.10. Color Space Conversion.. 99
5.1.11. Print Dialog Prompt .. 100
5.1.12. Compression .. 100
5.1.13. Encryption and Restrictions.. 101
5.1.14. Viewer Preferences .. 102
5.1.15. Merging PDFs .. 104
5.1.16. Digital Signing.. 106
5.1.17. Font Embedding .. 107
5.1.18. Overprinting.. 107
5.1.19. Attachments ... 108
5.1.20. PDF Script .. 109
5.1.21. Preview Images ... 110
5.1.22. Custom XMP .. 110

5.2. Image Output .. 110
5.2.1. Selecting a page .. 111
5.2.2. Converting a Document Into Multiple Images ... 111
5.2.3. Continuous Output .. 112
5.2.4. Grayscale Image.. 112
5.2.5. Color Space Conversion .. 112

6. Layout Documents ... 113
6.1. Pagination ... 113

6.1.1. Layout at Breaks.. 113
6.1.2. Page Selectors... 114
6.1.3. Page Size & Orientation... 115
6.1.4. Named Pages... 116

6.2. Breaking Text ... 117
6.2.1. Automatic Hyphenation.. 118
6.2.2. Widows & Orphans ... 118

www.pdfreactor.com

Table of Contents

3

6.2.3. Customizing Line Breaks ... 119
6.3. Generated Content .. 120

6.3.1. Generated Text .. 121
6.3.2. Generated Images... 122
6.3.3. Counters.. 122

6.4. Page Header & Footer .. 124
6.4.1. Header, Footer & Page Side Boxes... 124
6.4.2. Running Elements... 125
6.4.3. Running Documents ... 128

6.5. Generated Content for Pages ... 129
6.5.1. Page Counters ... 129
6.5.2. Named Strings ... 129
6.5.3. Cross-references ... 130
6.5.4. Footnotes .. 132
6.5.5. Sidenotes .. 134
6.5.6. Continuation Markers ... 138

6.6. Transforms .. 139
6.6.1. Reduce Table Width with Rotated Table Headers.. 139

6.7. Multi-column Layout.. 140
6.8. Line Grids and Snapping.. 142
6.9. Region Layout .. 144

6.9.1. Adding Regions to Region Chains... 144
6.9.2. Adding Content to a Named Flow .. 145
6.9.3. Region Generated Content ... 146

6.10. Controlling Breaks... 146
6.10.1. Breaking Around Boxes ... 147
6.10.2. Avoid Breaking Inside Boxes.. 147
6.10.3. Adaptive Page Breaks.. 148

6.11. Page Floats... 148
6.12. Print Specific Page Properties .. 149

6.12.1. PDF Page Boxes ... 149
6.12.2. Printer Marks.. 151

6.13. Positioning Content Relative to Page Boxes ... 152
6.14. Leaders.. 152
6.15. Table of Contents .. 153
6.16. Shrink-to-Fit .. 155

6.16.1. Scaling Pixel Lengths... 155
6.16.2. Scaling Down Page Content ... 156
6.16.3. Scaling Down Text .. 156
6.16.4. Fit Wide Tables.. 157

6.17. Page Order.. 157
6.17.1. Merge Mode Arrange.. 158

6.18. Pages Per Sheet .. 159
6.19. Booklet... 160
6.20. Filling in Pages... 160
6.21. Pixels per Inch.. 161
6.22. Internationalization .. 161

6.22.1. Languages .. 161
6.22.2. Right-to-Left ... 161
6.22.3. Text Direction Dependent Layouts .. 162

6.23. Media Queries .. 163
6.23.1. Media Types ... 163
6.23.2. Media Features .. 164

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

Table of Contents

4

6.24. Document-Specific Preferences ... 168
6.25. Converting Large Documents ... 170

6.25.1. Segmentation... 170
6.25.2. Fast Tables ... 171
6.25.3. Recommendation for Large Documents .. 172

6.26. Annotations... 172
6.26.1. Comments .. 172
6.26.2. Change Bars .. 175

7. Accessibility .. 178
7.1. Automatic PDF Tagging ... 178
7.2. Authoring Requirements .. 179
7.3. Controlling Tagging with WAI-ARIA... 180

7.3.1. Roles .. 181
7.3.2. States and Properties ... 184
7.3.3. Accessible Name and Description ... 184
7.3.4. WAI-ARIA-based Tagging Examples .. 184

7.4. Controlling Tagging with CSS ... 185
7.4.1. Overriding or Configuring Tag Type Determination ... 186
7.4.2. Overriding or Specifying Attributes.. 190

7.5. Creating Tagged PDFs from Non-HTML Input Documents... 191
8. User Agent... 193

8.1. Security Settings.. 193
8.2. Network Settings.. 193
8.3. HTTP Cache ... 193
8.4. PDFreactor Web Service.. 194

A. Fonts .. 195
A.1. Font Sources .. 195

A.1.1. Core Fonts Pack ... 195
A.1.2. System and JVM Font Directories ... 196
A.1.3. Additional Fonts & Font Directories .. 197
A.1.4. CSS Defined Fonts ... 197

A.2. The Font Cache Mechanism ... 197
A.2.1. Font Cache Lifecycle.. 198
A.2.2. Controlling the Font Registration and Caching Mechanism .. 198

A.3. Font Matching .. 199
A.3.1. Matching Generic Font Families .. 199
A.3.2. Font Alias Names.. 199
A.3.3. Automatic Font Fallback.. 200

B. JavaScript Objects and Types .. 201
B.1. Objects .. 201
B.2. Proprietary Types.. 204

C. PDFreactor Web Service Server Configuration... 212
D. Supported Barcode Types and Properties ... 220
E. CSS Support ... 246

E.1. Default Style Rules ... 246
E.2. CSS Attribute Selector ... 246
E.3. Supported Page Size Formats.. 247
E.4. Supported Hyphenation Languages.. 249
E.5. Supported length units ... 250
E.6. CSS Color Keywords .. 251
E.7. Counter and Ordered List Style Types ... 257
E.8. Supported Values for Transliteration .. 261
E.9. CSS Documentation ... 264

www.pdfreactor.com

Table of Contents

5

E.9.1. Properties ... 264
E.9.2. Functions .. 399
E.9.3. Pseudo Classes .. 418
E.9.4. Pseudo Elements .. 424
E.9.5. At-Rules .. 425
E.9.6. Types... 428

F. JavaScript Support .. 430
G. Code Samples for Other Languages... 432

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

Table of Contents

6

1. INSTALLATION
PDFreactor can be deployed in various ways:

 Web Service: The PDFreactor Web Service is used by clients (PHP1, .NET2, Python, Ruby, JavaScript,
Node.js and Java). It is also a RESTful service and thus can be used by any language utilizing the REST
API.

 Docker: Ready made container for the PDFreactor Web Service.

Note

For details about system requirements and information about the latest changes, please see the readme and
changelog files contained within the PDFreactor installation package.

1.1 The PDFreactor Web Service

If PDFreactor is deployed using the PDFreactor installer, the installation provides an option to automatically
install the PDFreactor Web Service with PDFreactor. No further configuration is required in this case.

The PDFreactor service is run on the application server Jetty. It is a requirement for the .NET, PHP, Python,
Ruby, Java, JavaScript, Node.js and Python Command Line cients.

By default, Jetty will listen at localhost:9423.

See

Customizing the Server Configuration (p. 33) for information on how to modify this and https://www.eclipse.org/jetty/
for further details about Jetty and ways to configure it.

On Unix and Linux platforms the separate installation of a Java VM is required. Furthermore the PDFreactor
Web Service must be started manually. To do so, after extracting the archive or installing the RPM go to the
"bin" subdirectory and use the following command to start the service:

./pdfreactorwebservice start

To stop the service, use:

./pdfreactorwebservice stop

To display whether the service is already running, use:

./pdfreactorwebservice status

1 PHP: Hypertext Preprocessor, an open-source server-side scripting language (https://www.php.net/)
2 pronounced "dot net", a software framework by Microsoft (https://www.microsoft.com/net)

www.pdfreactor.com

1. Installation

7

https://www.eclipse.org/jetty/
https://www.php.net/
https://www.microsoft.com/net

1.1.1 PDFreactor Web Service Setup on Windows

On Windows systems the PDFreactor Web Service is started with the Local Service account by default.

When the Web Service is started using this account, it can only access files from the local file system that the
Local Service account is allowed to access. For example, files from the user's home directory cannot be

read on most systems. The Web Service may or may not be able to read files from other locations on the disk
depending on the system configuration. If you need the Web Service to be able to access a particular file or
folder on the disk, add the Local Service user to the list of users that can access this file or folder, and
enable read permissions for this user.

In production environments, you may wish to start the PDFreactor Web Service with its own distinct user
account.

1.1.2 PDFreactor Web Service Setup on Linux / Unix

If PDFreactor was installed using the RPM package, PDFreactor will automatically be registered as a
systemd service if your system supports systemd , otherwise it will be registered as a "System V Init"

script.

Important

Installing PDFreactor through the RPM installer will create a system user called pdfreactor . The PDFreactor Web
Service will be executed using this user by default.

Running PDFreactor on systems that support systemd

The PDFreactor Web Service systemd service will automatically be enabled and started by the RPM
installer.

You can start, stop, restart or display the status of this service as with any other systemd service:

service pdfreactor start
service pdfreactor stop
service pdfreactor restart
service pdfreactor status

Running PDFreactor as a System V Init Service

The RPM installer will register as a "System V Init" service on systems that do not support systemd .

You can start, stop, restart or display the status of this service as with any other "System V Init" service:

/etc/init.d/pdfreactorwebservice start
/etc/init.d/pdfreactorwebservice stop
/etc/init.d/pdfreactorwebservice restart
/etc/init.d/pdfreactorwebservice status

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

1. Installation

8

Installing PDFreactor from a Tarball

PDFreactor is also available as tarball for systems that do not support RPM, or for users that prefer
deployment from a tarball. To start the PDFreactor Web Service after unpacking the tarball, please use the
bin/pdfreactorwebservice script located in the PDFreactor deployment directory, e.g.:

<user.home>/PDFreactor/bin/pdfreactorwebservice start

Important

When the PDFreactor Web Service is started in this way, it will be run with the permissions of the user that started it.
User privileges can be configured in
PDFreactor/jetty-base-pdfreactor/start.d/user-privileges.ini .

1.1.3 PDFreactor Web Service Setup on macOS

If the "Jetty Application Server" installation component is selected in the .DMG installer, the PDFreactor Web
Service will be registered as a LaunchDaemon. This LaunchDaemon will be managed by the user
_pdfreactor . This user is removed automatically when PDFreactor is uninstalled again. Note that if you

need PDFreactor to have access to files in your file system, you need to make sure they can be read by the
_pdfreactor user.

1.2 The PDFreactor Preview Application

PDFreactor Preview is a desktop application that is automatically installed when using one of the PDFreactor
installers for Windows or macOS. This application can be used in evaluation or development to quickly
convert and preview documents. It is not recommended for use production since it only offers a limited
feature set compared to a full PDFreactor integration.

1.3 Client Requirements

The PDFreactor Web Service clients are available in various different languages. Please refer to the
"install.txt" files in the corresponding client directories. The client directories are available at
"PDFreactor/clients" in your PDFreactor installation directory.

By default, the PDFreactor Web Service is configured in a way so that it only accepts requests from
localhost, so either the PDFreactor Web Service must be running on the same machine as the client, or its
configuration must be changed so that it accepts requests from remote servers. See Customizing the Server
Configuration (p. 33) for more information.

www.pdfreactor.com

1.1.3 PDFreactor Web Service Setup on macOS

9

2. INTEGRATION

2.1 Basics

When integrating PDFreactor into your application, keep in mind your desired workflow. PDFreactor can
convert one single HTML or XML document to PDF or image. If you want to convert multiple documents, you
have to run multiple conversions. Another important factor is how the input document is supplied. In some
workflows, the document already exists on a local or remote server, others might use a template engine to
compile and render the document on-the-fly. Depending on the integration and your application, these
processes can be parallelized. The following chapters explain comprehensively what steps you have to take
to convert a document.

See

Additional information about the various input and output formats can be found here:

 HTML input (p. 60)

 XML input (p. 61)

 PDF output (p. 90)

 Image output (p. 110)

2.1.1 Creating a PDFreactor Instance

To convert a document to PDF or image, you first have to create a PDFreactor instance. This is done with the
constructor of the PDFreactor class.

A PDFreactor instance is designed to be reusable, so you only have to create it once. Web service clients
require one instance per service.

2.1.2 Configuring the Conversion

Now that you have a PDFreactor instance , you have to pass configuration properties to PDFreactor.
Configuration instances are designed to be one-use, and it is not recommended to use the same
configuration instance for multiple conversions.

PDFreactor pdfReactor = new PDFreactor();

See Using Java (p. 29) for a more extensive sample.

All languages (p. 432)

Configuration config = new Configuration();
All languages (p. 432)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

10

2.1.3 Specifying the Input Document

PDFreactor can convert a source document in HTML or XML format to PDF or image, depending on the
licensed options. Since you already have a configuration (p. 10) from the previous chapter, you can pass the
input document with the document configuration property. This property is the only one which actually
required (all other configuration properties are optional), and the conversion will fail if it is not set.

The document configuration property is polymorphic and takes a string in various formats, such as a HTML
document or a URL. Depending on the integration or client used, it may support other data types. The
following table highlights some of the most common use cases for the source document and shows what
data types are usually most appropriate. Examples follow after the table.

Common Use Cases

Use Case Data Type

Local document: A document that exists locally on your server's file system. file URL as string

Remote document: A document that exists on an external server, accessible via HTTP. HTTP(S) URL as string

Dynamically rendered template: A document that is generated from a template and
rendered by a template engine.

Content as string or
binary*

* Binary data is represented as a byte array (byte[]) in Java and .NET, and as a base64-encoded string in
other service clients.

Important

PDFreactor does not support file system paths for the source document directly. To convert a document on a file
system, use a file URL3, i.e. a URL that starts with file:// followed by the absolute path to the document (on
Windows, this path also needs to start with a slash).

3 RFC 8089

www.pdfreactor.com

2.1.3 Specifying the Input Document

11

https://datatracker.ietf.org/doc/html/rfc8089

Example 1: Source document use cases

Use case: A local document exists on the file system at /local-folder/document.html (Linux and
Mac) or c:\local-document\document.html (Windows).

Use case: A remote document that can be accessed via
https://some-server.com/document.html .

Use case: A template is rendered to a string.

The rendered template is represented in the examples above as a variable whose value is computed by
the fictional function renderMyTemplate , which represents the business logic in your workflow that
would populate and render the template into a variable of string (or binary) data. In cases of REST and the
CLI, the rendered template must either already exists as a local or remote document, or the document has
to be passed directly as HTML content. This if of course also possible for all other integration scenarios
and clients, but might not be ideal.

The document configuration property is required, all other configuration properties are optional.

2.1.4 Starting the Conversion

Now that you have created your configuration by at least specifying an input document, you can start the
conversion. This is explained in detail in the integration-specific chapter:

 Synchronous (p. 16) and asynchronous conversions (p. 17) in a PDFreactor Web Service client

2.1.5 Processing the Result

Once the conversion is finished, you either receive a Result object, the converted document as raw bytes,
or other API-specific data types. In this chapter, we will focus on the Result object as it not only contains
the converted document but also other conversion-specific metadata that may be useful for integrators. It
contains the following properties:

Result Properties

Property Description

document The converted document as binary data.

documentArray The converted multi-image (p. 111) as an array of binary data (each array item
represents a separate page image).

log The log of the conversion. See Logging (p. 41).

Continued

config.setDocument("file:///local-folder/document.html"); // Linux/Mac
config.setDocument("file:///c:/local-folder/document.html"); // Windows

All languages (p. 433)

config.setDocument("https://some-server.com/document.html");
All languages (p. 434)

String renderedTemplate = renderMyTemplate();
config.setDocument(renderedTemplate);

All languages (p. 434)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

12

Property Description

numberOfPages The total number of laid out pages.

numberOfPagesLiteral The actual number of pages of the resulting PDF. This page count can differ from
numberOfPages if post-layout steps change the PDF further, such as Pages Per
Sheet (p. 159).

conversionName The conversion name as specified in the conversionName (p. 42) configuration
property.

javaScriptExports Data that was exported during JavaScript processing. See Exporting Data From
JavaScript (p. 86).

exceedingContents Exceeding content data if PDFreactor is configured to observe it. See Exceeding
Content (p. 44).

missingResources Missing resources if PDFreactor is configured to observe them. See Missing Resources
(p. 44).

connections Connections established during the conversion if PDFreactor is configured to observe
them. See Connections (p. 45).

documentId The ID of the document conversion.

contentType The content type of the resulting document as a MIME type string. Depends on the
output format. See PDF output (p. 90) and image output (p. 110).

callbackUrl If this object was created for a callback, this property indicates the callback's URL. See
Callbacks (p. 37).

startDate The date as Unix timestamp in milliseconds when the conversion started.

endDate The date as Unix timestamp in milliseconds when the conversion finished.

error The message of the error or exception that caused the conversion to terminate
prematurely. If not present, the conversion finished successfully.

keepDocument Whether or not the conversion result may be retrieved multiple times without being
deleted automatically, depending on the keepDocument configuration property. See
Deleting the Document (p. 18).

The result document can be accessed like this:

Note that the result object has either a document or a documentArray depending on the specified output
format (p. 90), but never both. In most scenarios, converted documents need to be processed further by the
integrator's own business logic.

Continued

byte[] pdfOrImage = result.getDocument();
byte[][] imagePages = result.getDocumentArray();

All languages (p. 435)

www.pdfreactor.com

2.1.5 Processing the Result

13

Please refer to the API documentation of the client or integration for more details and on how to access these
properties.

Result Streams

For large documents, it is usually better to stream the result either directly to the file system or to other
application components.

See

Streaming Conversions (p. 18) for information on how this is implemented in PDFreactor.

2.2 Memory

Depending on the input documents, PDFreactor may require additional memory. Large and especially
complex documents, e.g. documents containing several hundred pages or documents using a complex
nested HTML structure, may require even larger amounts of memory. In addition, concurrent conversions
also increase memory consumption since they occur simultaneously in the same Java VM.

The exact amount of memory required depends nearly entirely on the input document. Should you run into
any issues converting a document, we recommend increasing the memory to e.g. 2GB or higher before
attempting another conversion. First signs of memory running short are unusual long conversion times and
high CPU usage of multiple threads, even if only one document is being converted.

Should PDFreactor run out of memory, you will usually experience a java.lang.OutOfMemoryError .
When using the PDFreactor Web Service or a PDFreactor Docker Container, they may crash, since the
application is not recoverable after such an error. Should such a situation occur, it is recommended to
increase the amount of memory available to PDFreactor or to reduce the number of concurrent conversions.

Depending on which PDFreactor integration or application you use, the memory configuration is different.

PDFreactor Web Service

See Web Service Configuration (p. 32) for how to increase the memory available to the PDFreactor
Web Service.

PDFreactor Docker Container

Specify an appropriate Xmx parameter in the JAVA_OPTIONS environment variable. See Docker
Configuration (p. 49) for more information.

PDFreactor Preview

To increase the amount of memory available to the PDFreactor Preview app, you need to adapt the
"PDFreactor/bin/PDFreactor Preview.vmoptions" file.

To increase the memory to e.g. 4GB, change the parameter to -Xmx2048m or -Xmx4g and restart
the PDFreactor Preview app.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

14

Important

It is not recommended to increase the memory available to PDFreactor to an amount which is greater than the
amount of memory available on the system, after subtracting what the OS and other processes already consume.
This can lead to instability of the Java VM.

2.2.1 Parallel Conversions

When doing multiple parallel PDF conversions, it is important to adapt the available memory to the number of
parallel conversions.

Generally, a common document requires no more than 64MB of memory. To safely convert up to 16 of these
documents in parallel, PDFreactor requires at least 1GB of memory (16 * 64MB). Keep in mind that this is
merely a rule of thumb and that the amount of required memory may vary depending on the documents and
integration environments.

2.2.2 Extensive Conversions

Most commonly, memory is the limiting factor when trying to convert very large or complex documents.
Besides increasing the amount of memory, PDFreactor offers other strategies you could employ which will
reduce memory pressure. See Converting Large Documents (p. 170) for general recommendations on how to
convert particularly large jobs.

2.2.3 Analyzing Memory Consumption

When converting documents with PDFreactor, Java will consume certain amounts of memory (depending on
the size and complexity of the document), up to its configured maximum heap size. Should it run out of free
available memory, the Java VM will perform a so-called garbage collection. This will free up unused memory.

However, if a conversion is finished, Java actually won't automatically perform a garbage collection as it is
not necessary. When using non-Java system tools to inspect memory usage, this behavior may appear
problematic since Java seems to retain more and more memory without freeing it up even if there are
currently no conversions running. Nevertheless, this is normal and intended Java behavior.

Java only frees up memory if necessary and won't do so merely because a process such as a PDFreactor
conversion ends. This means memory issues can't reliably be analyzed using non-Java system tools since
they don't actually show how much memory can be freed up after a garbage collection.

To properly analyze memory issues, we recommend Java-specific tools like VisualVM4.

2.3 Using the PDFreactor Web Service

If PDFreactor is deployed using the PDFreactor installer, the installation provides an option to automatically
install the PDFreactor Web Service with PDFreactor. No further configuration is required in this case.

4 https://github.com/oracle/visualvm

www.pdfreactor.com

2.2.1 Parallel Conversions

15

https://github.com/oracle/visualvm

On Unix and Linux platforms, no installer is available. Therefore, the PDFreactor Web Service must be
started manually on these systems. To do so, after unzipping the PDFreactor installation archive go to the
"path-to-PDFreactor/bin" directory and use this command to start the service:

./pdfreactorwebservice start

To stop the service, use:

./pdfreactorwebservice stop

To display whether the service is already running, use:

./pdfreactorwebservice status

Install PDFreactor Web Service as system.d service

Alternatively on systems which support system.d you can install PDFreactor as system service as follows:

After unzipping the PDFreactor installation archive go to the "path-to-PDFreactor/bin" directory. Then issue
the following commands:

cp pdfreactor.service /etc/systemd/system

systemctl start pdfreactor.service

systemctl enable pdfreactor.service

The PDFreactor Web Service can be used by one of the clients (PHP, .NET, Python, Ruby, Java, JavaScript,
Node.js and Python Command Line) or by using its REST5 API.

Debugging start-up

If you have problems starting the PDFreactor web service, you can try to debug the start-up process using
the following command:

./pdfreactorwebservice run

2.3.1 Synchronous Conversions

While the time to keep HTTP connections open is usually negligible when converting small documents,
synchronous conversions may be very detrimental to the user experience when converting large or complex
documents.

Result result = pdfReactor.convert(config);
All languages (p. 435)

5 REpresentational State Transfer

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

16

2.3.2 Asynchronous Conversions

The PDFreactor Web Service can convert documents asynchronously, meaning that the client is not required
to keep an open HTTP connection to the server until the conversion is finished.

Important: Temporary Document Files

When doing asynchronous conversions, temporary files are created on the server's file system. These files are
deleted when the document is retrieved by the client (except when the keepDocument property is set in the
configuration). Should these documents not be retrieved, they will remain on the server until they are automatically
deleted after 5 days. It is also save to remove these files via external cleanup mechanics.

See

See Asynchronous Temporary Document Storage Configuration (p. 33) for more information on how to configure the
store.

Starting an Asynchronous Conversion

Converting synchronously is very simple. You send a request for conversion to the server using the
convert method and receive the result object in the response. Asynchronous conversions on the other

hand have to be managed by the integrating application. You can start an asynchronous conversion by using
the convertAsync method. The response is a unique ID which references the conversion you just
triggered. The ID is important as it is the only way to check on or retrieve the finished document from the
server at a later time.

Checking the Progress

Since after the conversion is triggered you do not have any information on whether it is finished or not, your
application needs to poll the progress of the conversion. This is done by using the getProgress method,
which takes the conversion ID as argument. The returned object contains an indicator whether the
conversion is finished, the current estimated progress in percent and a partial log, if a log level was
configured.

Retrieving the Document

After the conversion is finished, you can retrieve the document by using the getDocument method, which
again takes the conversion ID as a parameter. The returned result object is the same as if you had called the
convert method in the beginning, meaning that it contains the converted document.

// sync
Result result = pdfReactor.convert(config);
// async
String id = pdfReactor.convertAsync(config);

All languages (p. 436)

Progress progress = pdfReactor.getProgress(id);
All languages (p. 436)

Result result = pdfReactor.getDocument(id);
All languages (p. 437)

www.pdfreactor.com

2.3.2 Asynchronous Conversions

17

Important

Retrieving the document causes it to be deleted from the server if not configured otherwise. See Deleting the
Document (p. 18) for further information.

Deleting the Document

As already mentioned, asynchronously converted documents are stored on the server to be accessible at a
later point. To make managing these stored files as convenient as possible, by default the document is
deleted from the server once it is retrieved for the first time, e.g. by using the method getDocument . Since
this might be undesirable in certain cases, it can be prevented by setting the keepDocument property of the
Configuration object to true .

Once you want to remove the document from the server, call the deleteDocument method with the
conversion ID as argument.

2.3.3 Streaming Conversions

When converting large documents, the result can be streamed to reduce memory pressure on the clients.
This works both for synchronous and asynchronous conversions.

Retrieving the Conversion Metadata

When streaming the result, you will always receive the document's bytes directly. So if you want to access
other metadata of the conversion that is usually contained in the Result object, you have to retrieve them
separately. To do this, you can use the getDocumentMetadata method. This method returns a Result
object without the actual result document. It is best practice to retrieve the metadata before the document,
since retrieving the document will potentially delete it (and its metadata) (see Retrieving the Document
(p. 17)).

2.3.4 Using the REST API

The REST API provides application- and language-neutral access to the PDFreactor Web Service. To use a
RESTful resource, your application has to open an HTTP connection to the appropriate URL.

config.setKeepDocument(true);
All languages (p. 437)

pdfReactor.deleteDocument(id);
All languages (p. 438)

// sync
pdfReactor.convert(config, outputStream);
// async
pdfReactor.getDocument(id, outputStream);

All languages (p. 438)

Result result = pdfReactor.getDocumentMetadata(id);
All languages (p. 439)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

18

The PDFreactor Web Service offers two REST APIs:

 Conversion API: The conversion API is used to perform conversions.

 Monitoring API: The monitoring API is only intended for administrators to observe the service’s load and
performance.

All REST APIs are available under /service unless the service is otherwise deployed or configured.
RESTful resources respond with an appropriate HTTP status code. Please see the REST API documentation
for detailed information.

RESTful Conversion API

The conversion API is used to perform and manage document conversions. While the RESTful URLs are not
identical to the appropriate client methods, the names are recognizable (see API Comparison (p. 39) for a
comparison).

The RESTful PDFreactor Web Service can be reached at /rest , i.e. via the URL http://localhost:9423/
service/rest, unless otherwise deployed or configured. The WADL6 is available under http://localhost:9423/
service/rest?_wadl.

The following table gives a comprehensive overview of all available RESTful resources:

RESTful Resources of the Conversion API

Resource HTTP
method

Description Headers

/convert POST Converts the specified document into PDF or image.

/convert/async POST Converts the specified document into PDF or image
asynchronously.

Location

/progress/{id} GET Checks the progress of the conversion with the given ID. Location

/document/{id} GET Retrieves the converted PDF or image.

/document/{id}/{page} GET Retrieves the specified page of a converted multi-page image.

/document/metadata/
{id}

GET Retrieves the metadata of the converted PDF or image.

/document/{id}/show/
{fileName}

GET Displays the converted PDF in the browser with the given file
name.

/document/{id}/
download/{fileName}

GET Triggers a download of the converted PDF with the given file
name.

Continued

6 Web Application Description Language

www.pdfreactor.com

2.3.4 Using the REST API

19

http://localhost:9423/service/rest?_wadl

Resource HTTP
method

Description Headers

/document/bundle POST Downloads a ZIP file containing the PDFs with the given IDs and
file names.

/document/{id} DELETE Deletes the converted PDF or image from the server.

/schema GET Retrieves the JSON schema for all data models consumed or
produced by the PDFreactor Web Service.

/schema/{model} GET Retrieves the JSON schema a specific data model consumed or
produced by the PDFreactor Web Service, such as
"Configuration". This schema can be used for validation.

/status GET Checks if the REST service is responsive and able to convert
documents.

/version GET Retrieves the version of the PDFreactor Web Service.

Example 2: Calling a REST resource

To convert a document using the RESTful conversion API, the following resource has to be called using
the HTTP POST method:

http://localhost:9423/service/rest/convert

The PDFreactor configuration must be included in the POST data, either as JSON or XML string.

Payload

All POST resources require a payload in XML, JSON or ZIP format. Usually, the payload is the PDFreactor
configuration. In case of ZIP, the payload is an asset package and contains all resources required to convert
it to PDF (see Asset Packages (p. 24)).

When doing a request, the appropriate Content-type header should be set.

Example 3: Simple XML and JSON Payloads

XML:

<prws:configuration xmlns:prws="http://webservice.pdfreactor.realobjects.com/">
 <prws:document>https://www.realobjects.com</prws:document>
</prws:configuration>

JSON:

{
 "document": "https://www.realobjects.com"
}

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

20

Headers

The RESTful resources /convert/async and /progress/{id} both return a Location header, which
contains the URL that should be called next.

The Location header of the /convert/async response contains the complete document URL to /
progress/{id} , including the id parameter. This makes it very convenient to get the progress after
triggering an async conversion. The Location header of the /progress/{id} response contains the
complete document URL to /document/{id} , including the id parameter. This header is only present if
the conversion is finished, so it can be used to directly access the converted document.

Data Formats

Certain resources like /convert or /progress return data in XML format by default. However, you can
control the data format by either specifying appropriate Accept headers or more conveniently by appending
a file extension to the REST resource. Not all file extensions are supported for all resources, and some file
extensions may behave differently.

 pdf, png, jpg, bmp, tiff, gif – Retrieves the binary data of the converted PDF or image
directly. Also, the appropriate Content-Type headers are included so that you can display the PDF or
image directly in the browser. These file extensions are only supported for the /convert and /

document resources

 bin – Same as above, however, the data is returned as generic binary data with content type
"application/octet-stream".

 json, xml – The data is returned in JSON or XML format.

 txt – The data is returned as plain text. What exactly is returned depends on the resource:

 /progress/{id}.txt returns the current estimated progress in percent

 /version.txt returns the full version as a string

 /convert.txt or /document/{id}.txt return the converted PDF as a base64 encoded string

Example 4: Retrieving a converted PDF

To retrieve an asynchronously converted PDF from the server, use the /document resource with the
conversion ID "1234" as a URL parameter like this:

http://localhost:9423/service/rest/document/1234

The resource will return a result object which includes (among other data) the converted PDF as a base64-
encoded string. If no file extension is given, the data is returned in XML format. If you prefer the data in
JSON format, just add the appropriate file extension to the resource:

http://localhost:9423/service/rest/document/1234.json

Sometimes it might be desirable to retrieve the PDF directly as binary data or display it in the browser. For
this, simply use the "pdf" file extension:

http://localhost:9423/service/rest/document/1234.pdf

www.pdfreactor.com

2.3.4 Using the REST API

21

Note

When using the convert or document resources to retrieve the binary data of the converted document directly,
you can specify an image file extension like jpg even if you retrieve a PDF (and vice-versa). This is not
recommended. While the returned binary data is the same, an inappropriate "Content-Type" header is set which might
confuse some user agents. If you do not know whether you retrieve an image or a pdf, use the generic extension
bin .

RESTful Monitoring API

The monitoring API of the PDFreactor Web Service can be reached at /monitor , i.e. via the URL http://
localhost:9423/service/monitor, unless otherwise deployed or configured.

Important

To use the monitoring API, you must configure an admin key. More information about this can be found in the section
Enabling Administrative Access (p. 59).

RESTful Resources of the Monitoring API

Resource HTTP
method

Description

/server GET Provides information about the server environment, amount of CPU cores, available
memory, environment variables, Java system properties and the PDFreactor service.
This includes all server parameters (see Server Parameters (p. 35)) except for the
admin key parameters.

/conversions GET Provides an overview of all conversions. This includes queued conversion requests,
currently running conversions as well as the amount of total conversions and failed
conversions.

/conversions/
running

GET Same as /conversions, but provides only information about running conversions.

/conversions/
queued

GET Same as /conversions, but provides only information about queued conversion
requests.

/conversions/
finished

GET Shows the number of conversions that have finished since the server started.

/conversions/
finished/
successful

GET Shows the number of conversions that have successfully finished since the server
started.

/conversions/
finished/failed

GET Shows the number of conversions that have failed since the server started.

/log GET Retrieves a batch of server log messages. The query parameter "index" indicates the
start index of the batch.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

22

Note

The monitoring API does not store any conversion information, except for the number of finished and failed
conversions. Once the conversion is finished, all information about it is lost.

Server Logs

You can access the server logs via the log resource. Monitoring applications may want to display a
continuous stream of log messages, so the log is returned in batches. To specify the batch, the query
parameter index is used. The returned object contains a next property which indicates the value you
should use for the index parameter in the next request.

To display a continuous stream of log messages, start with an index of 0. Then parse the result and always
use the next property’s value for the index parameter. If there are no new log messages, the next
value remains the same and will change as soon as there are new log messages.

Example 5: Retrieving the server log as a continous stream

To get a continuous stream of messages in a monitoring application, perform the following steps:

1. Make a request to retrieve the first batch of log messages with index 0:

http://localhost:9423/service/monitor/log?adminKey=xyz&index=0

2. Parse the result. In JSON format it will look like this:

{
 "messages": [
 "First log message",
 "Second log message",
 ...
],
 "next": 50
}

Use the value of the next property for the index of the next request (50 in this case).

3. Make a request to retrieve the next batch of log messages with the next index:

http://localhost:9423/service/monitor/log?adminKey=xyz&index=50

4. Continue with step 2.

www.pdfreactor.com

2.3.4 Using the REST API

23

2.3.5 Asset Packages

Instead of using a simple configuration to convert an external document, the REST service also accepts an
asset package in ZIP format. This package must have a "configuration.xml" or "configuration.json" file in its
root directory. The content of this configuration file is a normal configuration in XML or JSON format, except
that the document is specified as a URL relative to it. All other resources required by the document can also
be placed in the asset package and can be linked relatively to the document.

Example 6: Custom asset package

This is an example asset package structure and configuration.

configuration.json:

{
 "document": "input.html",
 "addComments": true,
 "userStyleSheets": [
 {
 "uri": "styles/common.css"
 }
]
}

The configuration above points to a document that is located in the same directory as the configuration file
as well as a user style sheet in the "styles" directory. Let's assume the content of the input document looks
like this:

<html>
 <head>
 <link rel="stylesheet" href="styles/document.css">
 <script src="scripts/main.js"></script>
 </head>
 <body>
 <p>Hello World </p>
 </body>
</html>

The input document also references a style sheet, a script and an image, all located in different directories.
Files and directories are arbitrary, only the configuration file must be in located the root directory. All
relative URLs are resolved against the root directory of the Asset Package.

With the configuration and input document above, the final package structure should look like this:

myPackage.zip
├ configuration.json
├ input.html
├ styles
│ ├ document.css
│ └ common.css
├ scripts
│ └ main.js
└ images
 └ beach.png

You could then convert this asset package to PDF using e.g. curl:

curl -X POST -H "Cache-Control: no-cache" -H "Content-Type: application/zip" --data-
binary @myPackage.zip "http://localhost:9423/service/rest/convert.pdf" > result.pdf

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

24

Limitations and Restrictions

Asset packages are subject to the following limitations and restrictions:

 Asset packages must have a "configuration.json" or "configuration.xml" file in their root directory.

 A document in the asset package must be specified as URL relative to the configuration file.

 All relatively linked resources must be put in the asset package.

 No base URL can be specified in the configuration.

 Relative URLs must not point to locations outside of the asset package.

2.3.6 Prioritizing Jobs

By default, the PDFreactor Web Service processes conversion jobs in FIFO order, i.e. in the same order as
they arrive, although conversion times may of course vary. In addition, synchronous conversions generally
have a higher priority than asynchronous ones. To prioritize certain jobs, you can specify the
requestPriority configuration property. Its value determines at which position in the conversion queue

the new conversion is placed. Greater values mean higher priority.

If no other priority is specified, the PDFreactor Web Service assigns the following default priorities:

 Synchronous conversions: priority 10

 Asynchronous conversions: priority 0

2.3.7 Downloading Document Bundles

To download a converted document, you can use the /document/{id} resource with the ID of the
conversion. This downloads a single conversion result. However, sometimes it can be desirable to download
multiple converted documents in one request. For this, you can use the /document/bundle resource.
Note that this resource requires a POST request rather than GET. It returns a ZIP file containing the
requested documents with file names of your choosing.

www.pdfreactor.com

2.3.6 Prioritizing Jobs

25

The operation will fail if at least one of the requested documents cannot be found or if the specified file
names are not unique. If no file name is provided, the service will automatically generate one, by either using
the documentName configuration property or the conversion ID.

Example 7: Download Bundles

This is an example POST body to download several converted documents. The name property specifies
the file name.

{
 "documents": [
 {
 "id": "899159cc-7440-47e9-bd75-3c9be61bb5e3",
 "name": "November Report.pdf"
 },
 {
 "id": "a912e3e9-23b4-4821-bd1e-e72e1d2ce0b6",
 "name": "December Report.pdf"
 },
 {
 "id": "b9c643e0-5f9d-4843-a9f7-71fbb4f13c89",
 "name": "Projection Next Year.pdf"
 }
]
}

The resulting ZIP then contains the following files:

bundle.zip
├ November Report.pdf
├ December Report.pdf
└ Projection Next Year.pdf

2.3.8 Using a Client

PDFreactor can also be easily integrated in your web apps using one of the clients, i.e. PHP, .NET, Python,
Ruby, Java, JavaScript, Node.js or Python Command Line. This has to be used in conjunction with the
PDFreactor Web Service which is run by a Jetty web application server (see chapter The PDFreactor Web
Service (p. 7)).

See also The PDFreactor Web Service (p. 7) for information on how to start the service.

Using PHP

To use the PDFreactor PHP API simply copy the "PDFreactor.class.php" to a directory of your web server
where PHP is enabled.

Then include the "PDFreactor.class.php" with:

include("/path/to/PDFreactor.class.php");

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

26

With just a few lines you can create and show PDFs inside your PHP web application:

<?php
include("../PDFreactor.class.php");
$pdfReactor = new PDFreactor();
$config = array("document" => "https://www.pdfreactor.com");

try {
 $result = $pdfReactor->convertAsBinary($config);
 header("Content-Type: application/pdf");
 echo $result;
} catch (PDFreactorWebserviceException $e) {
 header("Content-Type: text/html");
 echo "<h1>An Error Has Occurred</h1>";
 echo "<h2>".$e->getMessage()."</h2>";
}
?>

See

PDFreactor methods in the PHP API docs for all available options.

PHP API specific issues

PHP Script timeout: Generally the timeout of PHP scripts is set to 30s within the "php.ini". When rendering
large documents this limit may be exceeded.

Using .NET

You can easily access the PDFreactor service from any .NET language. The library assembly
"PDFreactor.dll" offers you a large subset of the Java-API and takes care of all communication with the
service.

A simple usage in C# would be:

PDFreactor pdfReactor = new PDFreactor();
Configuration config = new Configuration();
config.Document = "https://www.pdfreactor.com/";

try
{
 byte[] pdf = pdfReactor.ConvertAsBinary(config);
}
catch (PDFreactorWebserviceException e)
{
 // ...
}

See

PDFreactor methods in the .NET API docs for all available options.

Using ASP.NET

To use the .NET API from ASP.NET7 copy "PDFreactor.dll" from "clients\netstandard2\bin" in your
PDFreactor installation directory to "bin" in the root of your IIS-Application or to the global assembly cache.

www.pdfreactor.com

2.3.8 Using a Client

27

An ASP.NET example would be:

<%@ Page Language="C#" Debug="false" %>
<%@ import namespace="RealObjects.PDFreactor.Webservice.Client" %>
<%
PDFreactor pdfReactor = new PDFreactor();
RealObjects.PDFreactor.Webservice.Client.Configuration config =
 new RealObjects.PDFreactor.Webservice.Client.Configuration();
config.Document = "https://www.pdfreactor.com/";

try
{
 byte[] result = pdfReactor.ConvertAsBinary(config);

 Response.ContentType = "application/pdf";
 Response.BinaryWrite(result);
}
catch (PDFreactorWebserviceException e)
{
 Result result = e.Result;
 Response.Write("<h1>Error During Rendering</h1>>");
 Response.Write("<h2>"+result.Error+"</h2>");
}
%>

Using Python

To use the PDFreactor Python API simply copy the "PDFreactor.py" to a directory of your web server where
Python is enabled (by e.g. CGI or mod-python).

Then include the "PDFreactor.py" with:

import sys
sys.path.append("path/to/PDFreactor.py/")
from PDFreactor import *

With just a few lines you can create and show PDFs inside your Python web application:

pdfReactor = PDFreactor()
config = { "document": "https://www.pdfreactor.com" }

try:
 result = pdfReactor.convertAsBinary(config)

 # Used to prevent that newlines are converted to Windows newlines (\n --> \r\n)
 # when using Python on Windows systems
 if sys.platform == "win32":
 import os, msvcrt
 msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)

 print "Content-Type: application/pdf\n"
 sys.stdout.write(result)
except PDFreactorWebserviceException as e:
 print "Content-Type: text/html\n"
 print "<h1>Error During Rendering</h1>"
 print "<h2>"+str(e)+"</h2>"

7 Active Server Pages .NET, a framework by Mircosoft to build dynamic web sites and web applications

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

28

Windows specific issues

To output the PDF directly to the browser please use the following code:

if sys.platform == "win32":
 import os, msvcrt
 msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY)
 print "Content-Type: application/pdf\n"
 sys.stdout.write(result.document)

See

PDFreactor methods in the Python API docs for all available options.

Using Ruby

To use the PDFreactor Ruby API simply copy the "PDFreactor.rb" to a directory of your web server where
Ruby is enabled (by e.g. CGI or mod-ruby).

Then include the "PDFreactor.rb" with:

require 'PDFreactor.rb'

With just a few lines you can create and show PDFs inside your Ruby web application:

pdfReactor = PDFreactor.new()
config = { document: "https://www.pdfreactor.com/" }

begin
 result = pdfReactor.convertAsBinary(config);

 print "Content-type: application/pdf\n\n"
 $stdout.binmode
 print result
rescue PDFreactorWebserviceException => e
 print "Content-type: text/html\n\n"
 puts "<h1>Error During Rendering</h1>"
 puts "<h2>#{e}</h2>"
end

Windows specific issues

When outputting the PDF directly to the browser please use the following code before printing the result:

$stdout.binmode

See

PDFreactor methods in the Ruby API docs for all available options.

Using Java

To use the PDFreactor Java client simply add the "pdfreactor-client.jar" to your Java application's class path.

www.pdfreactor.com

2.3.8 Using a Client

29

With just a few lines you can create PDFs inside your Java application:

PDFreactor pdfReactor = new PDFreactor();
Configuration config = new Configuration();
config.setDocument("https://www.pdfreactor.com/");

try {
 byte[] result = pdfReactor.convertAsBinary(config);

 // handle the PDF
} catch (PDFreactorWebserviceException e) {
 System.out.println(e.getMessage());
}

See

PDFreactor methods in the Java API docs for all available options.

Using JavaScript/Node.js

Note

This chapter refers to the JavaScript API that allows using PDFreactor from JavaScript in a browser. There are also:

 JavaScript in the input document, processed by PDFreactor like in a browser (p. 82)

 Scripts added to the resulting PDFs, processed by the PDF-viewer (p. 109)

To use the PDFreactor JavaScript API simply add the "PDFreactor.js" as a JavaScript to your web page or as
a module in your Node.js application.

JavaScript

<script src="PDFreactor.js" />

Node.js

const PDFreactor = require('PDFreactor.js');

Asynchronous by Nature

Because the JavaScript and Node.js clients use HTTP requests which are asynchronous by nature, the convert and
all other API methods that retrieve data from the service return Promises.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

30

With just a few lines you can create PDFs inside your web page or application:

pdfReactor = new PDFreactor();
const config = { document: "https://www.pdfreactor.com/" };

try {
 const result = await pdfReactor.convert(config);
 const pdf = result.document;
 // handle the PDF
} catch (e) {
 if (e instanceof PDFreactor.PDFreactorWebserviceError) {
 console.log(e.message);
 }
}

See

PDFreactor methods in the JavaScript or Node.js API docs for all available options.

Using the Python Command Line

PDFreactor features a Python based command line web service client which requires the PDFreactor Web
Service to be running.

The Python Command Line executable is located in the "PDFreactor/clients/cli" directory. It can be used like
this:

python pdfreactor.py

Batch Processing

The Python Command Line client can be used to batch convert files by either specifying a directory on your
system or using wildcards in the input file name.

Example 8: Batch Processing

python pdfreactor.py -i /directory/documents

Here all files in the "/directory/documents" are converted.

python pdfreactor.py -i /directory/documents/test*.html

Here all files in the "/directory/documents" matching the file name are converted.

Note

Contrary to other clients, the Python Command Line client can also process file paths as input documents (in addition
to URLs and content). When using file paths, the PDFreactor Web Service must be running on the same system. If not,
the file paths cannot be accessed.

Note

Asynchronous conversions are not possible using the Python Command Line client.

www.pdfreactor.com

2.3.8 Using a Client

31

2.3.9 Custom Headers and Cookies

In certain situations it may be necessary to set custom headers and cookies to the connection from the client
to the PDFreactor Web Service. This can be done with the connectionSettings . Any API method that
connects to the server takes a connectionSettings object as an optional last parameter.

If sticky cookies are a requirement (e.g. for load balanced scenarios), make sure to use the same instance of
the connectionSettings object for each request that should use the same sticky session. PDFreactor
automatically modifies the connectionSettings parameter to include all cookies from the response (and
thus any potential load balancer sticky cookies).

Example 9: Setting custom headers and cookies

See

See Load Balancing (p. 34) for using the connectionSettings specifically in conjunction with a load balancer's
sticky cookie.

2.3.10 Web Service Configuration

The PDFreactor Web Service can be configured in several ways. Most commonly, as described in the chapter
Memory (p. 14), you may want to increase the amount of memory available.

Increasing Memory

To increase the amount of memory available to the PDFreactor Web Service, you need to adapt the
-Xmx2048m parameter in the file "PDFreactor/jetty-base-pdfreactor/start.d/main.ini".

To increase the memory to e.g. 4GB, change the parameter to -Xmx4g and restart the web service.

Note

It is recommended to adapt the memory parameter for the PDFreactor Web Service appropriately before going into
production.

Increasing/Limiting Concurrent Conversions

The number of maximum threads limits the number of parallel conversions. For machines with multiple CPU
cores, this value can be increased to allow more parallel conversions. This number is automatically
determined by the PDFreactor Web Service to provide a sensible default value for the most common use
cases. It can also be configured manually (see the parameter threadPoolSize in Server Parameters
(p. 35)). The Jetty application server also has a configured limit of 200 maximum threads which should only
be increased if absolutely necessary.

ConnectionSettings connectionSettings = new ConnectionSettings();
connectionSettings.setHeaders(new HashMap<>());
connectionSettings.setCookies(new HashMap<>());
connectionSettings.getHeaders().put("my-header", "my-header-value");
connectionSettings.getCookies().put("my-cookie", "my-cookie-value");
pdfReactor.convert(config, connectionSettings);

All languages (p. 439)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

32

Keep in mind that more parallel conversions will result in increased memory usage. To reduce memory
pressure or to accomodate particularly large jobs, the maximum number of concurrent conversions may need
to be reduced.

Customizing the Server Configuration

Sometimes it may be necessary to change the host or port of the PDFreactor Web Service.

You can change the port in the following of the "PDFreactor/jetty-base-pdfreactor/start.d/main.ini":

…
jetty.http.port=9423
…

Usually it is recommended to run the PDFreactor Web Service on the same machine as the PDFreactor
integration. This is not strictly necessary and the host for the service can be changed.

You have to remove the following line from the "PDFreactor/jetty-base-pdfreactor/start.d/main.ini":

…
jetty.http.host=localhost
…

This will enable the PDFreactor Web Service to be accessible from other machines. By default, the service is
available under "http://localhost:9423/service".

Important: Untrusted Clients

When the PDFreactor Web Service is accessible from other hosts and if it is not secured by other means (e.g.
firewalls), there are important security implications as explained in Security (p. 51) and particularly in Untrusted
Clients (p. 52).

If either the host or port were changed or if you use a completely custom server for the PDFreactor Web
Service, you need to specify the new service URL in the constructor of the PDFreactor instance.

Example 10: Setting the service URL

See

See Docker Configuration (p. 49) on how to specify memory, parallel conversion limits and the port when using the
PDFreactor Docker image.

Asynchronous Temporary Document Storage Configuration

As mentioned in Asynchronous Conversions (p. 17), the storage can be configured further. This is done
using Server Parameters (p. 35). the following parameters are relevant:

 docTempDir (p. 214)

 docTempRetentionPeriod (p. 214)

PDFreactor pdfReactor = new PDFreactor("http://myServer:9423/service/rest");
All languages (p. 440)

www.pdfreactor.com

2.3.10 Web Service Configuration

33

Configuring the storage is especially relevant when running PDFreactor in a cluster environment with multiple
nodes. In this case, a shared file system storage can be used to ensure that each node has access to the
same storage state.

2.3.11 Accessing the Log

In addition to the possibilities mentioned in Logging (p. 41), log information is also available via the log and
error properties of the Progress object. While the log property contains the conversion logs, the
error property contains errors that may have occurred during the conversion and caused it to be aborted.

If the conversion is not yet finished, only a partial log will be available.

Additionally, the entire log output of the Jetty application server is written into log files located in the
"PDFreactor/jetty-base-pdfreactor/logs" directory. The server log output can be configured separately using
the serverLogLevel (p. 217) server parameter.

2.3.12 Cluster Configuration

When using the PDFreactor Web Service in production, a common use case is to run it in a cluster, using e.g.
a load balancer or container orchestration service like Kubernetes8. Running a cluster is straightforward when
using the official PDFreactor Docker image9. PDFreactor is effectively stateless when perforing synchronous
conversions (p. 16). When performing asynchronous conversions (p. 17), PDFreactor stores temporary files
on the file system. In this case, admins need to ensure that at least one of the following conditions is met:

 Ensure that clients are routed to the same instance via load balancing (p. 34).

 Ensure that all PDFreactor instances use a shared file system storage (p. 33).

See

See Docker Configuration (p. 49) for more information on how to configure a PDFreactor Docker container.

Load Balancing

In high availability and high performance environments it is common to run multiple PDFreactor Web
Services behind a load balancer.

8 https://kubernetes.io
9 https://hub.docker.com/r/realobjects/pdfreactor

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

34

When doing synchronous conversions, no additional configuration or settings are required since the request
to the web service is completely stateless. When doing asynchronous conversions on the other hand, you
have to make sure that all relevant requests are routed to the same web service by the load balancer. This
can usually be achieved by setting a sticky cookie. Please refer to the manual of the load balancer on how
exactly to handle sticky sessions. When using a client, cookies can be set using the connectionSettings
parameter of the PDFreactor instance (see Custom Headers and Cookies (p. 32)).

Example 11: Setting load balancer sticky cookie

You can set a pre-defined sticky cookie like this:

If the sticky cookie is set by the load balancer, you can leave the connectionSettings object empty.
PDFreactor will automatically write all response cookies into the connectionSettings object so that
they are part of subsequent requests.

Health Check

When operating PDFreactor in a cluster, it is important to periodically check the health of PDFreactor
instances and replace them should they not be healthy. Note that a PDFreactor container can be unhealthy
and still be running, that is why an explicit health check is recommended.

See

See chapter Monitoring (p. 37) for more information on how to perform health checks.

2.3.13 Server Parameters

Additional configuration options for the server can be specified for the PDFreactor Web Service. These are
parameters the client should not or cannot influence. They affect all conversions.

For a complete list of parameters that can be configured, please see appendix PDFreactor Web Service
Server Configuration (p. 212).

These server parameters can be configured in various ways:

Java System Properties

As system properties server parameters have the following form:

com.realobjects.pdfreactor.webservice.parameterName=parameterValue

To specify system properties for the PDFreactor Web Service, add them to the section "VM Arguments" in
the "PDFreactor/jetty-base-pdfreactor/start.d/main.ini" file, below the "--exec" line like this:

-Dcom.realobjects.pdfreactor.webservice.parameterName=parameterValue

ConnectionSettings connectionSettings = new ConnectionSettings();
connectionSettings.setCookies(new HashMap<>());
connectionSettings.getCookies().put("sticky-cookie", "sticky-cookie-value");
String documentId = pdfReactor.convertAsync(config, connectionSettings);
// ...
pdfReactor.getDocument(documentId, connectionSettings);

All languages (p. 441)

www.pdfreactor.com

2.3.13 Server Parameters

35

Important

The parameter name must be prefixed with com.realobjects.pdfreactor.webservice.

Servlet Init Parameters

Init parameters are specified in the "PDFreactor/jetty-base-pdfreactor/webapps/service.xml" file. They appear
similar to this:

<Call name="setInitParameter">
 <Arg>com.realobjects.pdfreactor.webservice.parameterName</Arg>
 <Arg>parameterValue</Arg>
</Call>

Important

The parameter name should be prefixed with com.realobjects.pdfreactor.webservice.

Environment Variables

Another way to set server parameters is in form of environment variables. How exactly environment variables
are set is dependent on your system, however it should be similar to this:

export PDFREACTOR_PARAMETERNAME=parameterValue

Important

The parameter name is upper cased and must be prefixed with PDFREACTOR_ and all dots (".") must be converted to
underscores ("_").

Configuration File

Server parameters can also be configured in a special configuration file. For this, create a new file
"pdfreactorwebservice.config" at the same location where the "pdfreactor-webservice.jar" is located, which is
usually in the "PDFreactor/jetty-base-pdfreactor/lib/ext" directory. The content of this configuration file is one
or more lines, each consisting of the following:

parameterName=parameterValue

This format is similar to Java's properties file format.

Parameter Priority

Should the same server parameter be specified in multiple ways (e.g. as system property and environment
variable), the parameter with the highest priority is chosen. The priority is as follows, with the first item having
highest priority:

1. Configuration file

2. System property

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

36

3. Environment variable

4. Servlet init parameter

2.3.14 Callbacks

When performing asynchronous conversions, you usually have to regularly poll the progress of these
conversions to determine when they are finished. As an alternative, you could also use callbacks which will
notify you automatically about certain steps of the conversion by performing an HTTP POST request to a
specified URL. The posted data is either in JSON, XML or plain text format, depending on the content type
that is specified for the callback. Some callbacks return the same data model as if you had called the
appropriate API methods. If the specified format is plain text, the data consists of a small string containing
only a minimum amount of information.

The following callback types are available:

Callbacks

Callback type Trigger Model
(JSON/XML)

Model
(plain text)

Similar API method

START The conversion has started on the server. Info Document ID N/A

FINISH The conversion has finished on the server. Result Document ID getDocument

PROGRESS The conversion is in progress. Progress Progress percentage getProgress

If you want to be notified once the conversion is done, this example demonstrates how to add a simple "ping"
that just posts the document ID of the finished conversion to your serve.

Example 12: Adding a ping

The next example demonstrates how to add a PROGRESS callback that will be called every 2 seconds until
the conversion is finished. The posted data will be in JSON format.

Example 13: Adding a progress notifier

2.3.15 Monitoring

The PDFreactor Web Service offers various tools to monitor its operations.

config.setCallbacks(new Callback()
 .setUrl("http://myServer/myEndpoint1")
 .setType(CallbackType.FINISH)
 .setContentType(ContentType.TEXT));

All languages (p. 442)

config.setCallbacks(new Callback()
 .setUrl("http://myServer/myEndpoint2")
 .setType(CallbackType.PROGRESS)
 .setContentType(ContentType.JSON)
 .setInterval(2));

All languages (p. 443)

www.pdfreactor.com

2.3.14 Callbacks

37

Monitor the Health of an Instance

You can check if the PDFreactor Web Service is operational (i.e. if it can create PDFs) by using the method
getStatus in the clients or the REST URL /status of the RESTful Conversion API (p. 19). If the Web

Service is not working normally, an appropriate exception is thrown when using a client or the status code
503 is returned when using the REST API. In this case you should restart the PDFreactor Web Service.

See

See Custom Headers and Cookies (p. 32) for information about the connectionSettings object.

Advanced Monitoring

Server administrators may wish to monitor the PDFreactor Web Service and gain access to conversion
statistics or server specifics. This can be done via the RESTful Monitoring API (p. 22).

2.3.16 JSON Configuration Files

Some configuration data is too complex to be packed into a single string, so certain Server Parameters
(p. 35) require a URL or path to a JSON file which then contains the configuration data in JSON format.

To map the Java configuration property to JSON format, use the following rules:

 A single object in Java maps to a JSON object

 A list or array in Java maps to a JSON array of JSON objects

 Java setter methods map to JSON properties by removing the prefix "set" and lowercasing the following
character

 Java Enums map to simple strings in JSON using the same value

pdfReactor.getStatus(connectionSettings);
All languages (p. 444)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

38

Example 14: Mapping Security Rules to JSON

Consider the following Connection Rule (p. 52) in Java:

new SecuritySettings()
 .setConnectionRules(
 new ConnectionRule()
 .setName("My Rule")
 .setAction(ConnectionSecurityAction.ALLOW)
 .setHost("**.pdfreactor.com")
);

Since the Java property connectionRules is a list of connection rules instead of a single object, the
JSON format then looks like this:

[
 {
 "name": "My Rule",
 "action": "ALLOW",
 "host": "**.pdfreactor.com"
 }
]

2.4 API Comparison

The following table shows a comparison between the API methods available in PDFreactor Web Service
clients and as RESTful resources of the RESTful Conversion API (p. 19). Please note that depending on the
client language, the method signature might be slightly different.

API Comparison

Client REST resource
(HTTP method)

Description

convert(Configuration) /convert
(POST)

Converts the input document to PDF or image synchronously

convertAsBinary(Configuration) /convert.pdf
(POST)

Converts the input document to PDF or image synchronously and
returns the binary data directly

convertAsBinary(Configuration,
Stream)

/convert.pdf
(POST)

Converts the input document to PDF or image synchronously and
streams the binary data directly to the given stream

convertAsync(Configuration) /convert/async
(POST)

Converts the input document to PDF or image asynchronously

getProgress(id) /progress/{id}
(GET)

Checks the progress of an asynchronous conversion

getDocument(id) /document/{id}
(GET)

Retrieves the converted PDF or image

getDocumentAsBinary(id) /document/{id}.bin
(GET)

Retrieves the converted PDF or image directly as binary data

Continued

www.pdfreactor.com

2.4 API Comparison

39

Client REST resource
(HTTP method)

Description

getDocumentMetadata(id) /document/metadata/{id}
(GET)

Retrieves the metadata of the converted PDF or image

Not available /document/{id}/{page}
(GET)

Retrieves the specified page of a converted multi-page image
directly as binary data

deleteDocument(id) /document/{id}
(DELETE)

Deletes the converted PDF or image from the server

getStatus() /status
(GET)

Checks if the PDFreactor Web Service is responsive and able to
convert

getVersion() /version
(GET)

Gets the version of PDFreactor

The API /document/{id}/{page} is only available in REST. In the PDFreactor Web Service clients, you
can simply access the appropriate entry of the array property documentArray of the Result object.

Some methods do not return anything directly (e.g. deleteDocument and getStatus), however, all
methods throw appropriate exceptions. RESTful resources respond with appropriate status codes.

2.4.1 What API Method Should I Use?

When using PDFreactor Web Service clients, you have several convert API methods (or RESTful resources)
at your disposal. Depending on the use case, some API methods are more efficient than others.

Small Documents

Simple Case

Small and simple documents are best converted using the convertAsBinary API method. This method is
the most efficient since the document is returned as binary data without any additional overhead.

Important: Error Handling in Web Service Clients

Since the PDF data is streamed as soon as it is available, it is not possible for the PDFreactor Web Service to relay
errors to the client that occur while writing the PDF. For full error handling use convert or convertAsync

instead.

Complex Case

For more complex documents you should use the convert API method. This returns a result object
containing the document as a base64-encoded string, as well as a log, number of pages and exceeding
content information. When using this method, the PDF document is converted and stored in-memory. It also
has slightly more overhead but the result object contains helpful information about the conversion.

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

40

Large Documents

Long Conversions

When converting large documents that take some time to convert, you should convert asynchronously using
the convertAsync API method. This has several advantages: Firstly, the connections to the server are
closed directly after receiving the conversion request, thus avoiding keeping connections open for extended
periods of time which is timeout and error prone. Secondly the client's integration does not block during the
conversion and you have more control over when to retrieve the converted document. Lastly the document is
stored on the file system of the server, so it does not allocate any memory.

Big Results

In some cases, the resulting PDF or image can be very large. In such cases, it is recommended to use the
streaming API, i.e. the convertAsBinary (sync (p. 16)) or getDocumentAsBinary (async (p. 17)) API
methods. These methods take a stream as parameter which can pipe the result directly into e.g. a file on the
client's file system. This has the benefit that the big result is not stored in-memory, thus there is less memory
pressure on the client. Please refer to the client API documentation of your desired client language for
language-specific information and nomenclature.

2.5 Logging

PDFreactor can produce a detailed log of the entire conversion. To enable logging you have to set an
appropriate log level first using the configuration property logLevel , e.g. like this:

To retrieve the logs, use the log property of the Result object. This gives you a Log object and access
to the following logs:

Main log

The main log contains all relevant log information for that conversion. It can be accessed via the
records property of a Log object.

CSS log

This log contains detail information for certain CSS warnings or errors. Those may occur in
abbreviated form in the main log but are usually not critical for the conversion. It can be accessed via
the recordsCss property.

JavaScript log

PDFreactor logs JavaScript output similar to a browser. While it is also available in the main log, the
JavaScript log provides a more comprehensive and machine-readable access to the output. It can be
accessed via the recordsJs property.

The logs are only populated if logging is enabled. Logs can be retrieved from the Result object like this:

config.setLogLevel(LogLevel.WARN);
All languages (p. 444)

Log log = result.getLog();
if (log != null) {
 Record[] mainLog = log.getRecords();
 Record[] cssLog = log.getRecordsCss();
 Record[] jsLog = log.getRecordsJavaScript();
}

All languages (p. 445)

www.pdfreactor.com

2.5 Logging

41

Additionally, you can retrieve the logs using appropriate debug settings. Refer to Development and
Debugging Tools (p. 46) for more information.

Examples

The following examples show how to enable logging by setting an appropriate log level and then appending
the log to the generated PDF.

Example 15: Enable logging

2.5.1 Conversion Name

You can specify an arbitrary name for each conversion using the conversionName configuration property.
This name will be logged as the first and last line in each conversion log. This makes it easy to match a
conversion log to a particular document.

2.5.2 Log Capacity

During the course of the conversion, PDFreactor stores several messages in internal logs so that they can be
accessed afterwards. Those internal logs have a limited capacity. By default, each log stores 100 000 entries.
This should be sufficient for most documents. In the rare cases where this number needs to be adjusted, you
can use the configuration property logMaxLines like this:

If the log capacity is exceeded, the oldest entries will be removed to make room for the new ones.

2.6 License Key

2.6.1 Evaluation Mode

Without a license key PDFreactor runs in evaluation mode. In evaluation mode it is possible to integrate and
test PDFreactor just like the full version but the resulting PDF document will include watermarks and
additional evaluation pages.

2.6.2 Receiving a License Key

To obtain a license key, please visit the PDFreactor website (https://www.pdfreactor.com). It provides
information about all available licenses and how to receive license keys.

Configuration config = new Configuration();
config.setLogLevel(LogLevel.DEBUG);
config.setDebugSettings(new DebugSettings()
 .setAppendLogs(true));

All languages (p. 446)

config.setLogMaxLines(100);
All languages (p. 447)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

42

https://www.pdfreactor.com/

2.6.3 Setting the License Key

RealObjects provides you a license key file in XML format.

The license key can be set as a string using the licenseKey configuration property.

Example 16: Setting the license key

Note

You can ensure that no eval or license notices are added to PDF documents using an appropriate error policy:

This forces PDFreactor to throw an exception instead of adding notices to PDF documents (see Error Policies (p. 45)).

2.6.4 Setting the License Key in the Web Service

For integrators that use the PDFreactor Web Service with either one of the clients or the REST API, it may be
useful to not set the license key in their client-side integration. In this case, you can just copy the
"licensekey.txt" file to the "PDFreactor/jetty-base-pdfreactor/lib/ext" directory (where the "pdfreactor.jar" and
the "pdfreactor-webservice.jar" files are located). PDFreactor will scan for a license key file in that location
and use it if one is found.

See

See Docker Configuration (p. 49) on how to deploy a license key when using the PDFreactor Docker image.

2.7 Observing Document Content

When converting documents into PDF, it may be desirable to programmatically observe certain parts of the
document content to ensure that the PDF result is as excepted. This can be especially important for highly
dynamic input documents for which the result might not have been validated prior to the conversion.

There are currently two parts of the content that can be observed: Exceeding content and missing resources.
Exceeding content observes content that overflows certain boundaries, missing resources observes all
resources that could not be loaded during conversion.

All content observed this way is logged in the normal PDFreactor log. In addition to that, it is logged in
separate, machine-parsable logs which can be retrieved and analyzed after the conversion has finished to
verify the result.

A content observer can be configured like this:

String licensekey = "<license>... your license ...</license>";
config.setLicenseKey(licensekey);

All languages (p. 447)

config.setErrorPolicies(ErrorPolicy.LICENSE);
All languages (p. 448)

ContentObserver contentObserver = new ContentObserver();
// set up contentObserver, see below...
config.setContentObserver(contentObserver);

All languages (p. 448)

www.pdfreactor.com

2.6.3 Setting the License Key

43

2.7.1 Exceeding Content

Content that does not fit into its pages can be logged as well as programmatically analyzed. This functionality
is enabled and configured by using the content observer and requires two arguments:

The first one specifies what to analyze:

Constant Description

ExceedingContentAnalyze.NONE Disable this functionality (default)

ExceedingContentAnalyze.CONTENT Analyze content (text and images) only

ExceedingContentAnalyze.CONTENT_AND_BOXES Analyze content as well as boxes. (catches
exceeding borders and backgrounds)

ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES Analyze content as well as boxes, except for those
with absolute or relative positioning

The second one specifies how to analyze:

Constant Description

ExceedingContentAgainst.NONE Disable this functionality (default)

ExceedingContentAgainst.PAGE_BORDERS Find content exceeding the actual edges of the page

ExceedingContentAgainst.PAGE_CONTENT Find content exceeding the page content area. (avoids content
extending into the page margins)

ExceedingContentAgainst.PARENT Find content exceeding its parent (i.e. any visible overflow)

For example:

To programmatically process the results you can get an array of ExceedingContent objects using the
property exceedingContents . Please see the API documentation for details on this class.

2.7.2 Missing Resources

To ensure that all resources referenced in the input document (or in other resources) are loaded, configure
the content observer like this:

contentObserver
 .setExceedingContentAnalyze(ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES)
 .setExceedingContentAgainst(ExceedingContentAgainst.PAGE_CONTENT);

All languages (p. 449)

ExceedingContent[] exceedingContents = result.getExceedingContents();
All languages (p. 449)

contentObserver.setMissingResources(true);
All languages (p. 450)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

44

After the conversion, you can access and analyze a log containing all missing resources using the property
missingResources . It returns an array of MissingResource objects which contains the resource

description, type (e.g. style sheet, image, etc.) as well as a description why the resource is missing. If the log
is null , no resources are missing. Please see the API documentation for details on this class.

2.7.3 Connections

It is also possible to log all connections or connection attempts performed by PDFreactor. For this, configure
the content observer like this:

A log containing all connections or connection attempts can be accessed after the conversion via the
connections property. It returns an array of Connection objects which contain data about the

connection. For HTTP connections, the data includes the status code as well as request and response
headers. Please see the API documentation for details on this class.

Please note that connections that were blocked due to security settings (p. 51) are not included in this log
since PDFreactor blocked the connection before even attempting to open it.

2.8 Error Policies

It is possible to adjust PDFreactor's default error policy. Depending on the configured policy, the conversion
will now fail if certain criteria are met. The following error policies can be set and will terminate the
conversion:

 LICENSE The conversion will now fail if no full license key is set. This ensures that generated PDFs
won't contain any evaluation watermarks.

 MISSING_RESOURCE The conversion will now fail if any resources could not be loaded. If a detailed list
of missing resources is required, use an appropriate ContentObserver (see Missing Resources
(p. 44)) instead.

 UNCAUGHT_JAVASCRIPT_EXCEPTION The conversion will now fail if there are uncaught JavaScript
errors in any of the input JavaScript resources, including syntax errors.

 CONFORMANCE_VALIDATION_UNAVAILABLE The conversion will now fail when the PDF's conformance
could not be validated even though conformance validation (p. 97) was enabled. The conversion will also
fail of the validation module is not available or the conformance format is not fully supported for
validation.

This policy is recommended if you exclusively convert documents where validation is supported and
strictly required.

MissingResource[] missingResources = result.getMissingResources();
All languages (p. 450)

contentObserver.setConnections(true);
All languages (p. 451)

Connection[] connections = result.getConnections();
All languages (p. 451)

www.pdfreactor.com

2.7.3 Connections

45

 IGNORE_INVALID_MERGE_DOCUMENTS_EXCEPTION The conversion will no longer fail when exceptions
occur during merge operations (e.g. when trying to merge encrypted documents for which no owner
password or an invalid password was supplied). PDFreactor now ignores merge documents that cause
any exceptions, and they will be omitted from the final PDF.

 WARN_EVENT The conversion will now fail if any warning event occurs. Warnings usually don't fail the
conversion because a valid result can be produced, but the the fidelity of the result might be negatively
impacted. This error policy ensures that no such results will be produced.

Error policies can be set like this:

2.9 Limiting Conversion Times

To limit conversion times and to prevent certain inputs to cause extremely long or even indefinite conversion
times, you can specify timeouts. If a timeout is exceeded, the conversion will be aborted.

Conversion times can be limited by specifying a conversionTimeout in seconds.

See

To specifically limit JavaScript processing times, see JavaScript Timeout (p. 87).

See

To limit resource loading times, see Resource Timeout (p. 64). These timeouts will not cause the conversion to abort.

2.10 Development and Debugging Tools

2.10.1 Debug Settings

When integrating PDFreactor, especially during the trial and development phases, it might be useful to
retrieve debugging information about the conversion. The most convenient way to do this is by enabling the
various debugging tools of PDFreactor. This can be done in the configuration like this:

This causes PDFreactor to do the following:

 Set the log level to the most verbose level, i.e. LogLevel.PERFORMANCE .

 Append logs to the generated PDF with that log level. Can be controlled with the appendLogs property
of the DebugSettings object.

config.setErrorPolicies(
 ErrorPolicy.LICENSE,
 ErrorPolicy.MISSING_RESOURCE);

All languages (p. 452)

config.setConversionTimeout(30);
All languages (p. 452)

config.setDebugSettings(new DebugSettings().setAll(true));
All languages (p. 453)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

46

 Attach various debug files to the generated PDF. Can be controlled with the attachConfiguration ,
attachDocuments , attachResources , and attachLogs properties of the DebugSettings

object.

 No longer throw any exceptions. Instead, in case of an exception, a text document is returned that
contains the conversion log as well as the exception that would have been thrown. Can be controlled with
the forceResult property of the DebugSettings object.

The following debug files are attached by default:

Debug Files

Group Attachment URL File Description

documents #,
#originalsource

OriginalSource.txt The original input document

#finalsource FinalSource.txt The input document after XSLT preprocessing

#originaldocument OriginalDocument.txt The initially parsed input document

#originaldocumentpp OriginalDocumentPP.txt A pretty-printed version of the above

#finaldocument FinalDocument.txt The input document after all modifications
(JavaScript etc.) are completed

#finaldocumentpp FinalDocumentPP.txt A pretty-printed version of the above

configuration #configuration Configuration.txt The configuration object passed to the
PDFreactor instance

ClientConfiguration.txt The configuration object sent to the PDFreactor
Web Service (if used)

resources #resources Resources.dat All used external resources like style sheets,
scripts, images etc. as a ZIP file

logs #log Log.txt The main PDFreactor conversion log

#logcss LogCss.txt The PDFreactor CSS log

#logjavascript LogJavaScript.txt The PDFreactor JavaScript log

#systemproperties SystemProperties.txt A list of the current Java system properties

#connections Connections.txt A log of all URL connection attempts performed
by PDFreactor

#missingresources MissingResources.txt A log of all resources that could not be loaded

www.pdfreactor.com

2.10.1 Debug Settings

47

Important

Debug settings are intended for investigation purposes only and not for production use. Activating some or all debug
settings may change other configuration properties, such as the log level (p. 41). This is done for convenience to get
the most verbose result when debugging.

Controlling Debug Behavior

If only specific debugging tools are required, instead of setting the all property, you can use the
appropriate debug settings to enable the desired setting manually. The following properties are available:

 all — Activates all of the following debugging tools

 attachDocuments — Attaches all debug files belonging to the group "documents"

 attachResources — Attaches all debug files belonging to the group "resources"

 attachLogs — Attaches all debug files belonging to the group "logs"

 appendLogs — Appends the PDFreactor log to the generated PDF

 forceResult — Forces PDFreactor to return a result even if an exception occurred during the
conversion

Debug File Dump

In certain cases where no converted document could be created (e.g. when a specific PDF/A conformance
could not be achieved) it may be helpful to have access to the debug files mentioned previously. To do this, it
is possible to specify a directory when configuring the debug settings. If such a directory is specified,
PDFreactor will attempt to write all available debug files as a single ZIP into that directory. The local directory
can be specified like this:

PDFreactor will create a ZIP file with the naming scheme

PDFreactor-dump-yyyy-MM-dd-HH-mm-ss-SSS

where yyyy-MM-dd-HH-mm-ss-SSS represents the serialized date of the dump.

Attaching Debug Files Manually

If you only want specific debug files attached, you can forgo enabling the debugging tools entirely and use
the Attachments (p. 108) feature to make PDFreactor attach the appropriate file. For that, use the URLs
mentioned in the Debug Files (p. 47) table.

2.10.2 Inspectable Documents

To create inspectable documents that can be used with the PDFreactor Inspector application, use the
inspectableSettings configuration option like this:

All languages (p. 453)

config.setInspectableSettings(new InspectableSettings()
 .setEnabled(true));

All languages (p. 453)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

48

Note

A license key is required to enable the creation of inspectable documents.

Note

Creating inspectable documents increases the conversion time and may require additional memory.

2.11 Docker Configuration

2.11.1 Java Options

When using the PDFreactor Docker image, Java arguments such as memory and Java system properties can
be specified by passing an environment variable called JAVA_OPTIONS to the container on startup. If you
are using Docker Compose, you can also specify the JAVA_OPTIONS environment variable using the
environment key in your compose file.

2.11.2 Additional Configuration

The internal directory "/ro/config" is used for various configurations for the Docker container, so it is
recommended that you mount this directory. The following can be configured by simply deploying files in this
config directory:

License key

A license key can be deployed to "/ro/config/licensekey.txt" so that it is automatically loaded by the
container.

Custom fonts

PDFreactor automatically loads fonts in the "/ro/config/fonts" directory and subdirectories.

Server parameters

Instead of using Java system properties or environment variables, server parameters (p. 35) can also
be specified in a configuration file (p. 36) which will automatically be loaded when deployed to
"/ro/config/pdfreactorwebservice.config".

www.pdfreactor.com

2.11 Docker Configuration

49

Example 17: Docker Configuration Using a Compose File

A Docker Compose file that configures memory, maximum parallel conversions and the port as well as a
configuration directory could like like this:

version: "2"
services:
 pdfreactor:
 image: realobjects/pdfreactor
 container_name: pdfreactor
 ports:
 - "80:9423"
 volumes:
 - /your/config:/ro/config
 environment:
 JAVA_OPTIONS: >
 -Xmx2g
 -Dcom.realobjects.pdfreactor.webservice.threadPoolSize=4

See

See Cluster Configuration (p. 34) on how to run PDFreactor Docker containers in a cluster.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

2. Integration

50

3. SECURITY
PDFreactor converts HTML or XML documents which can contain external style sheets, scripts, images or
other resources. Depending on the use case, these documents and resources may come from untrusted
sources, such as third-party users. This means they might contain malicious code or content which may be
used to access private resources through Server-Side Request Forgery.

To protect against potential attacks, PDFreactor has a security layer in place which restricts certain
functionality via the configuration securitySettings .

Important: Supplemental Security Measures

Depending on your use case and processing chain, you should consider supplementing the security features offered
by PDFreactor with your own security measures that can protect your system e.g. on the network layer (such as
firewalls), which is beyond the scope of PDFreactor.

3.1 SSL Certificate Validation

When accessing resources from HTTPS, PDFreactor will automatically verify the target SSL certificate. If the
certificate is invalid, PDFreactor will refuse the connection. If this certificate is still deemed trustworthy (e.g.
because the target is located in the intranet or the certificate is self-signed) or during the development phase,
you can configure PDFreactor to automatically trust all certificates. This can be done with the
trustAllConnectionCertificates security property like this:

Please note that this approach is insecure and only recommended if you can verify that the target server is
trustworthy.

3.2 Connection Security

Whenever PDFreactor attempts a URL connection to a source from an untrusted security context, the URL is
vetted against certain criteria before the connection is opened.

3.2.1 Trusted and Untrusted Contexts

PDFreactor distinguishes between two security contexts when applying the security settings: Trusted and
untrusted. The PDFreactor API (i.e. the configuration object that is passed to the convert methods) is
considered a trusted security context, because usually only integrators have access to it. Any documents or
resources that are specified there are not subject to the connection security. So no matter how you configure
the connection security settings, resources specified in configuration properties such as document ,
userStyleSheets , baseUrl etc. are always allowed because it is assumed they have been set by the

integrator.

All languages (p. 454)

www.pdfreactor.com

3. Security

51

Please note that this is not transitive. Even though user style sheets and user scripts are always allowed,
resources that they load, e.g. via "@import" rule or XHR are subject to the connection security.

System fonts can also always be loaded, however they can be disabled separately.

All other resources, especially those that are part of the input document which is potentially produced by
untrusted third parties, are vetted according to the configured security settings.

Untrusted Clients

When using PDFreactor as a publicly available service or in certain other scenarios, PDFreactor processes
configurations that may not have been specified by the integrator or that come from user machines which are
by default untrusted environments. Additionally, if at any point in your processing chain it is possible for third
parties to inject code or content into the configuration object, then the entire configuration object should be
considered untrusted.

This is also the case when your PDFreactor integration code is executed on client machines (e.g. when using
a JavaScript integration). In this case, your integration code is vulnerable and should not be considered safe.

To protect yourself, you can use the untrustedApi property to configure the security layer in such a way
that PDFreactor treats the API as an untrusted context. This means that all security checks are also applied
to any resources specified in the PDFreactor configuration object, including the input document. In addition
to that, machine-specific information is omitted from the logs.

Author API Overrides

Input documents may be authored by third parties which don't have the same privileges as PDFreactor
integrators or admins. In this case, it is undesirable that such authors can override API settings, such as by
using PDF Output Options (p. 85). So by default, PDFreactor prevents access to these features unless it is
specifically allowed via the allowAuthorApiOverrides security setting.

3.2.2 Automatic Redirects

By default, PDFreactor follows redirects automatically. You can disable this with the allowRedirects
property:

3.2.3 Connection Rules

You can define security rules that either deny or allow connections to certain resources. These rules support
wildcard patterns for their hosts and paths. Each rule also has a priority. Rules are evaluated in order of their
priority, starting with the highest priority value. If rules have the same priority, they are evaluated in the same
order as they were inserted in the API. The priority is 0 by default.

config.setSecuritySettings(new SecuritySettings()
 .setUntrustedApi(true));

All languages (p. 454)

config.setSecuritySettings(new SecuritySettings()
 .setAllowAuthorApiOverrides(true));

All languages (p. 455)

All languages (p. 455)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

3. Security

52

If a resource is not matched by any of the rules (or if there are no rules), the default security behavior (p. 55)
is applied.

If multiple resource properties of a rule such as protocol , host , port or path are specified, the
resource must match all of the defined properties.

How Path Normalization Works

When PDFreactor vets resource paths according to security policies, it normalizes the path, ignoring any query
parameters and the fragment component. Additionally, relative path segments are resolved and non-URI characters
are URL encoded. So for the purposes of path vetting, the path

/part/../resource path/file?param=value#fragment

is normalized to

/resource%20path/file

Wildcard Patterns

Both the host and the path in connection rules support wildcard patterns, meaning that you can substitute characters
for the "?" or "*" characters. "?" represents a single wildcard character while "*" represents any single wildcard path
segment (when used in the path property) or one domain label (when used in the host property). If you want to
represent zero or any number of path segments or domain labels, use "**" instead.

Important: Invalid URI characters (according to RFC 2396) must be URL encoded for path segments!

The matching of hosts is always case-insensitive. The matching of paths is case-insensitive, unless the property
caseSensitivePath of the connection rule is set to true .

Note that path patterns must always start with a slash.

Example 18: Allowing and Denying Connections

This example illustrates how to allow connections to the internal host "company-cms" as well as
connections to certain paths of a publicly available CDN. All other connections are automatically denied.

All languages (p. 456)

www.pdfreactor.com

3.2.3 Connection Rules

53

Example 19: Wildcard Host Pattern

The pattern

*.pdfreactor.com

matches the hosts

cloud.pdfreactor.com
www.pdfreactor.com

but not

pdfreactor.com
www.cloud.pdfreactor.com

To match these hosts as well, you could use

**.pdfreactor.com

Example 20: Wildcard CSS File Pattern

To allow only CSS files, more specifically files with the extension "css", regardless of the host and path,
you could use the following path pattern:

/**/*.css

Important: Content from Untrusted Sources

To ensure that no URLs can be accessed, you can deny all URLs with a rule:

Make sure to set the path property to "/**", so that it works for URL types that do not have a host (such as file
URLs).

In this case, Asset Packages (p. 24) still allow resources inside the package to be accessed.

See

Refer to the chapter JSON Configuration Files (p. 38) for more information on how to configure rules in JSON format.

Data URIs and Blobs

Data URIs and Blobs are not subject to connection security, and thus cannot be blocked by connection rules
since this would be impractical. The single exception is the allowedProtocols setting which can be used
to block data URIs or Blobs altogether by not allowing the "data" or "blob" protocol, respectively.

All languages (p. 458)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

3. Security

54

JAR URLs

When using JAR URLs, security rules apply only to the URL to the JAR file, not the whole JAR URL. When
the security settings allow access to a JAR file, access is also automatically granted to all of its entries. You
can control access to certain JAR entries by using the entry property of a connection rule. Entries are
treated as paths, so you can use wildcard notation.

Example 21: Granting Access to a Resource inside a JAR

The following rule grants access to all resources inside the "resources" directory in a specific JAR file.
Since an entry is specified, the rule does not grant access to the JAR file itself. Also note that the protocol
is "file" and not "jar", since rules apply to the URL to the JAR file and not the whole URL.

The example above would grant access to e.g. the resource:

jar:file:///path/to/my.jar!/resources/image.png

Note

If an entry is specified for any connection rule, the rule will no longer apply to the URL itself, only the entry. This means
that specifying an entry on rules to non-JAR files makes them useless.

Note

Regardless of any more specific rules, access to the JAR itself needs to be ensured first. This means that the "jar"
protocol itself needs to be allowed in addition to other adjustments that depend on the used URL.

For example with a Jar URL like jar:file:///path/to/my.jar!/resources/image.png , would need the "file"
protocol as well as file system access to load the jar. In case of a URL like
jar:http://www.jar-server.com/jars/my.jar!/resources/image.png the "http" protocol would need to

be enabled as well as any connection rules needed to access the URL to the JAR itself.

3.2.4 Default Security Behavior

The default security behavior is applied to any URL to which no connection rule (p. 52) matched. The
appropriate configuration properties are grouped in the defaults property of the securitySettings .
Checks are applied in the following order:

All languages (p. 460)

www.pdfreactor.com

3.2.4 Default Security Behavior

55

1. allowSameBasePath

This property is considered true if not specified.

When a document is converted from URL or a base URL is specified, access to resources within the
same base path is allowed. No further security checks will be made for that resource. Please note that
this allows for HSTS, i.e. when the base or document URL is HTTP, then resources within the same
base path using HTTPS are also allowed.

This check is always skipped if the untrustedApi property is true .

￭ If a resource is within the same base path, it is allowed. Otherwise, subsequent default checks
below are applied.

What Is a Base Path?

The base path is the normalized part of the URL leading to the input document (or the base URL if specified),
up to the last slash. For HTTP or HTTPS URLs, the base Path consists of at least the host, even if the URL
does not end with a slash. For file URLs, it is ensured that the base Path is never the root directory.

For example, if the following URL is the input URL of your document:

http://myServer/document.html

Then the base path is the following URL:

http://myServer/

2. allowProtocols

This property is considered to have the values "http", "https", "data" and "blob" if not
specified.

A list of URL protocols (as lower-case strings) that are allowed. If the protocol of a resource is not
contained within this list, the resource is not loaded. Note that the "file" protocol is not handled by this
setting. Use allowFileSystemAccess to allow or restrict file URLs.

￭ If the resource's protocol is not allowed, the resource is denied. Otherwise, subsequent default
checks below are applied.

3. allowFileSystemAccess

This property is considered false if not specified.

Allows access to the file system. This is prohibited by default.

￭ If a resource points to a file and file system access is not allowed, the resource is denied.
Otherwise, subsequent default checks below are applied.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

3. Security

56

4. allowAddresses

This property is considered to have the values PUBLIC, PRIVATE and LOCAL if not specified.

Allows connections to a certain type of host or IP address. Possible values are:

 PUBLIC — Public hosts or IP addresses.

 PRIVATE — Hosts in private networks or IP addresses in the private range.

 LOCAL — Hosts or IP addresses pointing to the local machine.

 LINK_LOCAL — Link-local addresses or auto-IPs which are usually assigned automatically and
are usually not used to provide any useful resources for the conversion. Unless explicitly required,
it is recommended to not grant access to this type of address.

￭ If a resource points to a network address that is not allowed, the resource is denied.

JAR URLs

When using JAR URLs, the URL to the JAR file is also validated against file system access, allowed protocols as well
as allowed addresses. Security rules only apply to the URL to the JAR file.

Example 22: Allowing File System Access

To allow global file system access, you could use the following default settings. This is not recommended
when processing content from untrusted sources!

3.2.5 Non-local File URLs

PDFreactor automatically considers all file URLs to be invalid that have an authority component other than
"localhost". For example, the file URLs file:///dir/file (no host) and
file://localhost/dir/file are considered valid but file://host/dir/file ,
file://LOCALHOST/dir/file , and file://localhost:8080/dir/file are not.

Enabling this setting allows for arbitrary authority components in file URLs but may cause system-specific
behavior. On Windows systems for example, a file URL with a non-local host is interpreted as a UNC path.
This might allow potentially malicious authors gain information about the server's OS and available network
resources.

Since this affects the creation of URLs, they are checked before any other security checks are made.

Example 23: Allowing non-local file URLs

3.3 External XML Parser Resources

By default, PDFreactor does not load external resources during XML parsing, such as DTDs, entities or
XIncludes. To allow this for documents, you can use the allowExternalXmlParserResources property
of the SecuritySettings .

Example 24: Enable Loading of External XML Parser Resources

All languages (p. 461)

All languages (p. 462)

All languages (p. 462)

www.pdfreactor.com

3.2.5 Non-local File URLs

57

3.4 Controlling Client Access

3.4.1 Restricting Service Access

When your PDFreactor Web Service is accessible for a large number of clients or is located in a public cloud,
it may be desirable to restrict access to it so that only authorized clients can use the API. This can be done
with so-called "API keys". API keys are arbitrary strings that clients must send with each request, otherwise
the request will be rejected.

API keys can be configured via the server parameters (see Server Parameters (p. 35)) apiKeys or
apiKeysPath . The first parameter specifies a comma separated list of API keys. The latter one specifies

the path to a file "apikeys.json". That file contains a single JSON object with API keys as keys and a
description of the API key as value. This is useful if you use lots of different API keys for different clients and
want to have an overview of which API key is used for which client.

To gain access, clients must always send a valid API key with each request. When using one of the clients,
an API key can be conveniently set like this (Java example):

Please note that this does not make integrations that run on the client (such as JavaScript) secure.

3.4.2 Restricting API Access

Usually when clients use a PDFreactor Web Service, they have access to the full client-side PDFreactor API.
However, and especially when the client is untrusted, you may not always want to grant clients access to the
full API since this may expose certain server or application-specific information (such as appended logs). To
block access to certain parts of the API, you can specify an Override Configuration at the server side in JSON
format. All properties that are specified there (and that are non-null) will override similar properties in the
client configuration. This means that you can not only specify default values, but also essentially lock certain
properties.

Example 25: Blocking Configuration Properties

This example shows how a Override Configuration should look like to prevent clients from using the debug
mode (remember to override the deprecated properties as well) and to add attachments.

{
 "debugSettings": {},
 "enableDebugMode": false,
 "appendLog": false,
 "attachments": []
}

The server parameter overrideConfig (p. 216) is used to specify a URL to such an Override Configuration
JSON file.

See

Refer to the chapter JSON Configuration Files (p. 38) for more information on mapping Java classes to JSON format.

pdfReactor.setApiKey("myApiKey");
All languages (p. 462)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

3. Security

58

3.4.3 Enabling Administrative Access

Certain RESTful APIs of the PDFreactor Web Service (such as the Monitoring API (p. 37)) require you to
configure an admin key to be able to use them. Otherwise these APIs are not accessible at all. An admin key
can be configured via Server Parameters (p. 35), more specifically via adminKey (p. 212) or adminKeyPath
(p. 212).

The admin key can be an arbitrary string and is used similar to an API key (p. 58). To send the admin key, it
has to be appended as query parameter "adminKey" to the request URL like this:

Example 26: Using an Admin Key

http://localhost:9423/service/monitor/server?adminKey=yourAdminKey

3.5 Hiding Version Information

While information about the used PDFreactor version can be generally useful, disclosing version information
can give potential attackers knowledge of the underlying system who may then develop attacks targeting a
specific version of PDFreactor. To hide version information, use the security setting hideVersionInfo .

Example 27: Disabling Version Disclosure

Important

The version as well as other system or server information may also be included in the PDFreactor logs which can be
embedded in or attached to the resulting PDF using Development and Debugging Tools (p. 46). To make sure that
PDFs do not contain this information, integrators must ensure that the PDFreactor API is properly restricted (p. 58) or
not accessible to clients.

All languages (p. 463)

www.pdfreactor.com

3.4.3 Enabling Administrative Access

59

4. INPUT FORMATS
PDFreactor can process the following input formats. By default, it automatically tries to identify the right
format. The input format of the source document can be overridden using the documentType configuration
property.

4.1 HTML + CSS

HTML is rendered by PDFreactor using a default CSS style sheet for HTML in addition to the document's
style.

HTML is parsed by the built-in HTML5 parser which parses the document according to HTML5 rules. This
means that elements missing closing tags (such as <p> without </p>) are handled as demanded by the
HTML5 specifications. SVG Elements should be used without having their namespace specified.

See

See User Style Sheets (p. 68) and Integration Style Sheets (p. 68) on how to load additional CSS that is not originally
part of the input document.

You can force HTML processing like this:

4.1.1 Legacy XHTML

It is also possible, albeit discouraged, to enable the legacy XHTML parser and its cleanup processes for
HTML documents. You can force this document type like this:

In legacy XHTML, there are various cleanup tools at your disposal that will attempt to repair non-well-formed
XHTML documents:

 CYBERNEKO (default)
 JTIDY
 TAGSOUP
 NONE (no cleanup)

You can set a cleanup tool like this:

config.setDocumentType(Doctype.HTML5);
All languages (p. 463)

config.setDocumentType(Doctype.XHTML);
All languages (p. 464)

config.setCleanupTool(Cleanup.TAGSOUP);
All languages (p. 464)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

60

4.1.2 HTML + JavaScript

PDFreactor can also process JavaScript contained or linked in the HTML document. See JavaScript (p. 82)
for further details.

Note

JavaScript processing is only possible when converting HTML, not XML.

See

See User Scripts (p. 68) on how to load additional JavaScript that is not originally part of the input document.

4.2 XML + CSS

Like HTML, XML documents can be styled via CSS. Because XML does not have a default CSS style sheet,
you will have to provide one for your specific XML language.

Alternatively or in addition to directly styling the XML content it can be processed by the built-in XSLT10

processor, either to modify it or to convert it to HTML.

You can force XML processing like this:

4.2.1 XML + XSLT

PDFreactor can optionally transform XML documents using XSLT style sheets. This can transform the
document into other formats such as HTML. As with the normal input document, PDFreactor attempts to
detect the document type of the post-transformation document. This can be overridden by using the
postTransformationDocumentType .

The configuration property xsltMode is used to enable XSLT processing.

Example 28: Transforming XML to HTML

See

See XSLT Style Sheets (p. 68) on how to load additional XSLT style sheets that are not originally part of the input
document.

config.setDocumentType(Doctype.XML);
All languages (p. 464)

config.setPostTransformationDocumentType(Doctype.HTML5);
config.setXsltMode(true);

All languages (p. 465)

10 Extensible Stylesheet Language Transformations (https://www.w3.org/TR/xslt)

www.pdfreactor.com

4.1.2 HTML + JavaScript

61

https://www.w3.org/TR/xslt

4.3 Encoding

PDFreactor automatically detects the encoding of the input document, however the encoding can also be
forced to a specific value, e.g. like this:

4.4 CSS Validation

PDFreactor validates CSS, ignoring unknown properties and property values with invalid syntax. The
cssSettings configuration property is used to adjust PDFreactor's default behavior by constructing a
CssSettings object. This object has two properties, each one responsible for a different aspect of CSS

validation:

validationMode

Adjusts the CSS property validation behavior. This effects how PDFreactor validates CSS property–
value combinations when parsing style sheets. The default value is HTML_THIRD_PARTY .

supportQueryMode

Adjusts the CSS property support behavior. This effects how PDFreactor interprets the validity of CSS
property–value combinations in CSS "@supports" queries or via JavaScript. The default value is
HTML .

Both of these properties are configured using one of the constants below:

ALL

Indicates that all style declarations are considered valid disregarding the possibility of improper
rendering.

Valid values may be overwritten by invalid style declarations.

HTML

Indicates that all values set in style declarations will be validated as long as PDFreactor supports the
corresponding property.

Style declarations for properties not supported by PDFreactor are taken as invalid.

HTML_THIRD_PARTY

Indicates that all values set in style declarations will be validated as long as PDFreactor supports the
corresponding property.

Style declarations for properties not supported by PDFreactor but by third party products are taken as
valid.

config.setEncoding("UTF-8");
All languages (p. 465)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

62

HTML_THIRD_PARTY_LENIENT

Indicates that all values set in style declarations will be taken as valid if a third party product supports
the corresponding property.

Style declarations for properties not supported by any third party product but supported by PDFreactor
will be validated.

Example 29: Disabling CSS validation

4.5 Quirks Mode

Legacy HTML versions may have different CSS processing or layout rules. To be compatible, PDFreactor
offers various quirks settings to adjust its behavior appropriately. This can be done with the
quirksSettings configuration property. It takes an object with the following properties:

caseSensitiveClassSelectors

By default in HTML CSS class selectors are case sensitive.

In the default DETECT mode this behavior is disabled for old HTML doctypes or when there is no
doctype.

minLineHeightFromContainer

By default the line-height of text containers, e.g. paragraph elements, is used as the minimum line-
height of their lines.

In the default DETECT mode this behavior is disabled for old HTML doctypes or when there is no
doctype.

Each of these properties is configured with a QuirksMode constant to enable or disable it independently of
the document:

STANDARDS

Forced no-quirks (i.e. standard compliant) behavior.

QUIRKS

Forced quirks behavior.

DETECT

Doctype dependent behavior.

Example 30: Using case-insensitive CSS class selectors

config.setCssSettings(new CssSettings()
 .setValidationMode(CssPropertySupport.ALL)
 .setSupportQueryMode(CssPropertySupport.ALL));

All languages (p. 466)

config.setQuirksSettings(new QuirksSettings()
 .setCaseSensitiveClassSelectors(QuirksMode.QUIRKS);

All languages (p. 467)

www.pdfreactor.com

4.5 Quirks Mode

63

4.6 Resource Loading

PDFreactor automatically loads linked external resources, e.g. from tags like <link> , etc. If the
respective server does not respond within 60 seconds, loading of the resource will be aborted and it will not
be included in the document.

For documents including relative resources, like

...

<link href="../css/layout.css" rel="stylesheet" type="text/css" />

PDFreactor needs a base URL11 to resolve these resources. If your input document source is a URL, the base
URL will be set automatically. In all other cases you have to specify it manually:

It is also possible to specify file URLs:

4.6.1 Network Settings

PDFreactor automatically loads resources over the network or the local file system via file URLs. The network
settings encapsulate configuration options that affect how PDFreactor connects to a server to access a
resource and how it behaves when downloading it.

Connect and Read Timeout

Resource loading timeouts can be customized. Timeouts in milliseconds can be configured via the
connectTimeout and readTimeout network settings.

The connect timeout is the timeout in establishing the initial connection to the resource server, the read
timeout is the timeout in downloading the resource from the server (after establishing the connection).

These timeouts can be configured like this:

HTTPS

PDFreactor supports resource loading from HTTPS and will automatically verify the target SSL certificate.
Sometimes this can lead to PDFreactor refusing the connection due to issues with the certificate. For more
information please refer to SSL Certificate Validation (p. 51).

config.setBaseUrl("https://someServer/public/");
All languages (p. 467)

config.setBaseUrl("file:///directory/");
All languages (p. 468)

config.setNetworkSettings(new NetworkSettings()
 .setConnectTimeout(1000)
 .setReadTimeout(1000));

All languages (p. 468)

11 Uniform Resource Locator (https://www.w3.org/Addressing/)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

64

https://www.w3.org/Addressing/

Authentication

When resources are behind authentication, PDFreactor can automatically send appropriate HTTP headers to
gain access. You can specify the username and the password for the credentials via the
authenticationCredentials property. This property is a collection of HttpCredentials objects that

are used to specify various properties of the authentication and the target server. PDFreactor will
automatically select the credentials whose properties best match the target server's authentication request.

The following properties can be specified:

 username – The username. This property is required.

 password – The password. This property is required.

 authScheme – The authentication scheme, chosen from a list of constants. If set, PDFreactor only uses
these credentials when connection to a server whose authentication scheme matches the specified
scheme.

 host – The host. If set, PDFreactor only uses these credentials when connecting to the specified host.

 port – The port. If set, PDFreactor only uses these credentials when connecting to a server using the
specified port.

 protocol – The HTTP protocol. If set, PDFreactor only uses these credentials when connecting to a
server over the specified protocol.

 realm – The authentication realm. If set, PDFreactor only uses these credentials when connecting to a
server whose authentication challenge matches the specified realm.

HTTP Request Headers

Sometimes external resources require additional HTTP headers. PDFreactor will always send all configured
headers when requesting resources. HTTP headers can be specified via the requestHeaders

configuration property of the networkSettings object.

Example 31: Custom user agent header

Resource servers may have a white list of user agents to which they deliver content. While PDFreactor
always sends a default user agent header, it can be overridden if necessary.

config.setNetworkSettings(new NetworkSettings()
 .setAuthenticationCredentials(new HttpCredentials()
 .setUsername("username")
 .setPassword("password")
 .setAuthScheme(HttpAuthScheme.DIGEST)
 .setRealm("My Realm")));

All languages (p. 469)

config.setNetworkSettings(new NetworkSettings()
 .setRequestHeaders(
 new KeyValuePair("User-Agent", "MyApp/2.0"));

All languages (p. 470)

www.pdfreactor.com

4.6.1 Network Settings

65

Cookies

Some external resources require cookies, especially when trying to access session-specific resources.
PDFreactor features RFC 6265-compliant cookie handling and will send and store appropriate cookies with
each request and response. The cookie store persists for the duration of the entire conversion. If you want a
persistant cookie store that exists beyond the lifetime of conversions, use a User Agent (p. 193). Cookies as
well as PDFreactor's cookie policy can be specified via the cookies and cookiePolicy configuration
parameters of the networkSettings object, respectively.

Cookies have the following properties:

 name – The name of the cookie. This property is required.

 value – The value of the cookie. This property is required.

 domain – The domain attribute of the cookie. Specifies to which hosts the cookie is sent by PDFreactor.
Applies to any domain if not specified. Note that this behavior is an intentional deviation from the RFC
standard which does not allow cross-domain cookies. This is to ensure ease of use and backwards
compatibility.

 path – The path attribute of the cookie. Specifies the path which must exist in the target URI for
PDFreactor to send the cookie. Applies to any path if not specified.

 secure – The secure attribute of the cookie. Specifies whether this cookie will only be sent over secure
connections like HTTPS.

Example 32: Session cookies

A common use case for a custom cookie are session cookies that need to be sent for each resource
request so that PDFreactor has access to a user's session. This is relevant when PDFreactor is integrated
into a session-based web application. Usually, you would have to find a way to read the session cookies.
The example uses a static example value instead.

Cookie Policy

The cookie policy defines how PDFreactor handles cookies set by the server.

 DISABLED – Disables cookie handling entirely. Cookies specified via the cookies configuration
property are still sent, but server cookies are automatically rejected and not processed.

 STRICT – A strict standard-compliant cookie policy.

 RELAXED – Same as STRICT , but PDFreactor ignores any date issues in the cookies. This is the
default behavior.

A cookie policy can be set like this:

config.setNetworkSettings(new NetworkSettings()
 .setCookies(new Cookie()
 .setName("JSESSIONID")
 .setValue("123456789")));

All languages (p. 471)

config.setNetworkSettings(new NetworkSettings()
 .setCookiePolicy(CookiePolicy.RELAXED));

All languages (p. 472)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

66

4.6.2 URL Rewrites

PDFreactor can rewrite all URLs before connections to resources are even opened. This is done via the
urlRewriteSettings configuration property. This object takes one or more rules according to which

URLs are rewritten. The new URLs are then used to open the connections.

URL rewrite rules take a regular expression pattern and a substitution. The substitution can include group
identifiers and back references.

Example 33: Rewriting URLs to a certain host

The following sample rewrites all URLs beginning with "http://myOldHost/" to URLs that begin with "https://
myNewHost/".

All URLs that are called by PDFreactor are matched agains all URL rewrite rules. The URLs that are being
matched are always absolute and normalized. This means that:

 If the original URL was not absolute, it is resolved against the document's base URL

 All non-URI characters are URL encoded

 Dot segments are resolved or removed

Otherwise the URL is matched as-is, including query parameters and userinfo.

Data URLs

Data URLs are also matched, but before the match the data part is removed. This means you can still match the
header, but not the actual data.

Important

Since only the result URLs of the rewrite are used to open connections, security settings (p. 51) only apply to the new
URLs and not the original ones.

4.7 Additional Resources

In certain cases it is desirable to load additional resources, such as style sheets or scripts, without modifying
the contents of the input document. This can be achieved by specifying the resources directly in the
PDFreactor integration code instead of the document itself.

All of these resources use the Resource model. They are usually specified by a URL or by content. If both
content and uri properties are set, the uri is used as a base URL for the resource.

config.setUrlRewriteSettings(new UrlRewriteSettings()
 .setRules(
 new UrlRewriteRule()
 .setPattern("^http://myOldHost/(.*)$")
 .setSubstitution("https://myNewHost/$1")
)
);

All languages (p. 473)

www.pdfreactor.com

4.6.2 URL Rewrites

67

4.7.1 User Style Sheets

User style sheets represent CSS that is loaded in addition to the CSS specified in the input document.
Generally, user style sheets have higher priority as document style sheets, but lower priority as inline styles.

They can be added like this:

4.7.2 Integration Style Sheets

Integration style sheets are similar to user style sheets, but they have a lower priority than document CSS,
and thus also a lower priority than user style sheets.

4.7.3 User Scripts

User scripts represent additional JavaScripts. They are executed after all document JavaScript has finished
processing. You can optionally run certain user scripts before any document JavaScript by specifying the
beforeDocumentScripts property. This is useful for e.g. JavaScript-based shims.

User scripts can be added like this:

4.7.4 XSLT Style Sheets

When converting XML documents, you can add XSLT style sheets in your integration code to transform the
XML into HTML. They can be added like this:

4.8 Colors

4.8.1 Color Keywords

Instead of using color functions or the hexadecimal notation a single human readable keyword can be used.
For more information which keywords are supported by PDFreactor see the CSS Color Keywords table
(p. 251). The keywords are internally converted into the user-set color space. By default, they are converted
into RGB colors.

config.setUserStyleSheets(
 new Resource().setContent("p { color: red; }"),
 new Resource().setUri("http://myServer/my.css"));

All languages (p. 474)

config.setIntegrationStyleSheets(
 new Resource().setContent("p { font-family: sans-serif }"),
 new Resource().setUri("http://myServer/corporate-identity.css"));

All languages (p. 475)

config.setUserScripts(
 new Resource().setContent("console.log('executed first')")
 .setBeforeDocumentScripts(true),
 new Resource().setUri("http://myServer/my.js"));

All languages (p. 476)

config.setXsltStyleSheets(
 new Resource().setUri("http://myServer/my.xsl"));

All languages (p. 477)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

68

4.8.2 RGB Colors

In CSS you can specify RGB12 colors in the following ways:

 # followed by a 6 digit RGB value in hexadecimal notation, e.g. #00ff00 for perfect green. Adding two
more digits defines the alpha channel, with ff being opaque.

You can abbreviate this notation by using only 3 digits which will be expanded internally, e.g. #0f5
equals #00ff55 . The same can be done with 4 digits to also define the alpha channel.

 Using the function rgb . It takes the 3 RGB component values as parameters in decimal or percent
notation, e.g. rgb(0,255,0) or rgb(0%,100%,0%) for perfect green.

4.8.3 RGBA Colors

RGBA13 colors are also supported and can be specified by using the function rgba . It takes the 3 RGB
component values as well as 1 alpha component value as parameters in decimal or percent notation, e.g.
rgba(0,0,255,0.5) or rgba(0%,100%,0%,50%) for semi-translucent blue.

While it is currently possible to set RGBA colors on any CSS border, complex border settings (e.g. table cells
borders) or border styles other than "solid" are not yet supported and may cause unexpected visual outcome.

Note

The functions rgb and rgba share the same syntax and can be used interchangeably, so rgb(0%,100%,0%,50%)
will also result in a semi-translucent blue.

4.8.4 CMYK Colors

Besides rgb and rgba PDFreactor also supports the non-standard function cmyk . It takes the 4 CMYK
component values as parameters in decimal or percent notation, e.g. cmyk(0,0,1,0) or
cmyk(0%,0%,100%,0%) for perfect yellow. An optional fifth parameter can be used to define the color's

alpha value, e.g. cmyk(0%,0%,100%,0%,10%) would be a transparent yellow with an alpha of only 10%.

Color keywords can be converted automatically into CMYK using the configuration property
colorSpaceSettings.targetColorSpace :

CMYK colors are also supported in SVGs (p. 72).

config.setColorSpaceSettings(new ColorSpaceSettings()
 .setTargetColorSpace(ColorSpace.CMYK);

All languages (p. 478)

12 Red Green Blue, additive color model, consisting of the color components red, blue and green.
13 Red Green Blue Alpha, a color model similar to RGB, with extra information about the translucency.

www.pdfreactor.com

4.8.2 RGB Colors

69

4.8.5 HSL Colors

HSL14 is another representation of the RGB color space. The hue value is in the range of 0 to 360, the
saturation and lightness values range between 0 and 1. It is possible to set HSL colors using the function
hsl . It takes the 3 HSL component values as parameters in decimal or percent notation, e.g.
hsl(240,0,0) or hsl(66%,0%,0%) for blue. As with rgb , there is also the function hsla , though both

functions allow an additional parameter for the alpha value.

4.8.6 Spot Colors

Spot or separation colors, e.g. Pantone colors, are special named colors for professional printing. The
specific color name is passed as is to the print workflow. As they cannot be displayed on screen (or printed
without the correct named color), a fallback color must be specified, e.g. a similar CMYK color. A spot color
can be used via the CSS function -ro-spot and its synonym -ro-separation . The function takes two
or three parameters: The spot color name, the color tint (which is optional and defaults to 1.0, which
represents maximum "opacity") and the fallback color.

Spot colors are also supported in SVGs (p. 72).

4.8.7 Color Conversion

Different colors can be converted into a common color space. See Color Space Conversion (p. 99) for more
information.

4.9 Compound Formats

In addition to rendering HTML and XML styled with CSS, PDFreactor is also able to render documents with
compound formats such as images, SVGs or barcodes, so-called replaced element s.

The replaced elements can be mapped to arbitrary elements using styles.

You can use namespaces to include other document formats to integrate XML elements from a different
namespace directly within your document.

4.9.1 Images

PDFreactor has support for the image formats PNG, JPEG, TIFF, BMP, GIF as wells as limited support for
WebP (lossy simple VP8).

Images are embedded by PDFreactor "as-is", whenever possible, unless the properties
-ro-image-recompression or -ro-image-resampling are used. This means that images are not

modified in any way and will be embedded without any re-encoding and without any loss in quality. Possible
discrepancies in perceived quality might occur depending on the PDF viewer and the zoom level.

14 Hue Saturation Lightness, alternative representation of colors of the RGB color model.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

70

PDFreactor supports the img element per default in HTML. For other XML languages, you can use
proprietary CSS extensions to define an image element. For example, in an XML vocabulary where an image
element is <image source='test.jpg'> , the corresponding CSS definition would be:

image {
 -ro-replacedelement: image;
 -ro-source: attr(source);
}

To define an element as image element, you must specify the replaced element formatter for images for this
element, as displayed in the example above. Using the -ro-source property and the attr function, you
can select an attribute of this element. The value of this attribute must always be of the type URI15 and is
used to load the image.

Note

Corrupted images, embedded "as-is", may lead to corrupted PDF output.

Save Memory Mode

PDFreactor needs to access image data multiple times during the conversion. It needs to know an image's
dimensions during layout, and then the actual binary data to embed it in the PDF during rendering. To avoid
having to download the image multiple times and thus slowing down the conversion, PDFreactor keeps
downloaded images in memory for quick access. However, in certain scenarios, images can be quite large,
e.g. high-resolution TIFFs for print. In this case, it can actually be detrimental to keep the image in memory.
You can use the processingPreferences configuration object to change the default behavior of
PDFreactor. The value SAVE_MEMORY_IMAGES prevents PDFreactor from keeping images in memory.
Instead, they are downloaded each time PDFreactor requires data.

Example 34: Processing large high-res images

4.9.2 SVG

PDFreactor supports the following SVG16 types: SVG and SVGZ. PDFreactor automatically converts SVG
documents referenced via the img element. Example:

Alternatively, you can embed SVG directly into your documents:

a circle:

<svg width="100" height="100">
 <circle cx="50" cy="50" r="45" fill="yellow" stroke="black" />
</svg>

sometext.......

config.setProcessingPreferences(
 ProcessingPreferences.SAVE_MEMORY_IMAGES);

All languages (p. 478)

15 Uniform Resource Identifier (https://www.w3.org/Addressing/)
16 Scalable Vector Graphics (https://www.w3.org/Graphics/SVG/)

www.pdfreactor.com

4.9.2 SVG

71

https://www.w3.org/Addressing/
https://www.w3.org/Graphics/SVG/

Note

When using non-HTML5 documents, an SVG namespace has to be added and used:

<svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="100" height="100">
 <svg:circle cx="50" cy="50" r="45" fill="yellow" stroke="black" />
</svg:svg>

Rasterization

SVGs are embedded into the PDF as vector graphics, keeping them resolution independent. However, SVGs
containing masks, filters or non-default composites 17 have to be rasterized18. This behavior can be
configured using CSS:

The style -ro-rasterization: avoid disables the aforementioned SVG features to avoid having to
rasterize the image.

The property -ro-rasterization-supersampling configures the resolution of the rasterization. The
default value is 2 , meaning twice the default CSS resolution of 96dpi . Accepted values are all positive
integers. Higher resolution factors increase the quality of the image, but also increase the conversion time
and the size of the output documents.

CMYK and Spot Colors in SVG

PDFreactor supports CMYK (p. 69) and spot (p. 70) colors in SVGs. Those are passed to the PDF as-is, as
long as the SVG is not rasterized.

Example 35: Setting the stroke color to black

stroke="cmyk(0.0, 0.0, 0.0, 1.0)"

Text Rendering

When SVGs are converted to PDF vector graphics text can either be embedded as text, using a font, or as
shapes. The former allows selecting and copying the text and results in smaller output file size when there is
a significant amount of SVG text. It is also the default behavior, which can be overridden via the custom CSS
property -ro-pdf-text-rendering , specified on the root of the SVG. Specifying a stroke color forces
rendering as shapes. In certain complex scenarios embedding as text may also be disabled. The supported
styles include the common font styles and letter-spacing . Supported attributes include text-anchor ,
textLength and lengthAdjust .

17 Default composites use the src-over operator with an opacity of 1. Other compositing operations, especially those with an opacity that is not 0, are
considered non-default and will cause the SVG to be rasterized.
18 Rasterization is the task of taking an image described in a vector graphics format and converting it into a raster (pixel) image.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

72

4.9.3 MathML

To display MathML19 in documents we recommend using the JavaScript library MathJax20 using SVG output.

Example 36: Rendering MathML with MathJax

While the combined configuration MML_SVG typically works, it is recommended to use the following
configuration which is optimized for use in PDFreactor:

<script type="text/x-mathjax-config">
 MathJax.Hub.Config({
 showMathMenu: false
 jax: ["input/MathML", "output/SVG"],
 extensions: ["mml2jax.js"],
 MathML: { extensions: ["content-mathml.js"] },
 SVG: { blacker: 0 }
 });
</script>
<script src="url/to/MathJax.js></script>

The configuration above is automatically applied when using Awesomizr (p. 89) to load MathJax:

import { loadMathJax } from 'url/to/awesomizr.js';
loadMathJax('url/to/MathJax.js');

To use MathJax without modifying the input documents you can add it as a user script (see User Scripts
(p. 68)), in which case using Awesomizr to load it is recommended.

Important

PDFreactor supports MathJax with the following limitations:

Support for version 2 only. We recommend using the most recent release of that version to display MathML. MathJax
v3 is currently not suported.

SVG output only. Other output processors currently don't produce optimal results.

See

See JavaScript (p. 82) for more information on how PDFreactor processes JavaScript.

4.9.4 Barcodes

PDFreactor supports displaying numerous linear and 2D barcode symbologies using the following style:

.barcode {
 -ro-replacedelement: barcode;
}

The resulting replaced element can be customized by applying various CSS properties.

19 Mathematical Markup Language (https://www.w3.org/Math/)
20 MathJax (https://www.mathjax.org/ & https://github.com/mathjax/MathJax/) licensed under the Apache License 2.0

www.pdfreactor.com

4.9.3 MathML

73

https://www.w3.org/Math/
https://www.mathjax.org/
https://github.com/mathjax/MathJax/

The most important one is -ro-barcode-type , which can be used to select a specific type (and subtype)
of barcode to be rendered. For some types, the last argument of the property is also used to configure a
unique characteristic of the barcode (refer to the appendix (p. 220) for more information).

Important

The behavior of most of the -ro-barcode-* properties depends on the selected barcode type.

A full list of all supported barcode types, their subtypes and applicable CSS properties can be found in the appendix
(p. 220).

Defining the Content

There are multiple ways to define the content of the barcode. To define it directly, you can use the
-ro-barcode-content property:

Example 37: Creating a UPC-E barcode

.barcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: upc-e;
 -ro-barcode-content: "123456";
}

Example 38: Creating a Mode 3 MaxiCode

As MaxiCodes require a primary string in mode 2 or 3, the last argument of -ro-barcode-type is used
to add it.

.barcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: maxicode mode-3 "999999999840012";
 -ro-barcode-content: "1234567894561230";
}

If -ro-barcode-content is not set, PDFreactor will try to use the value of the element's href attribute:

Example 39: Creating a QR Code from an HTML link

HTML:

CSS:

#qrcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: qrcode;
 -ro-barcode-ecc-level: H;
 -ro-barcode-size: 2;
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

74

https://www.pdfreactor.com/

If both -ro-barcode-content and the href attribute are empty, PDFreactor will use the text content of
the element. That content is always trimmed, i.e. whitespace characters at its beginning and end are
removed. By default other sequences of whitespace characters are collapsed to single spaces. Collapsing
can be disabled by changing the value of white-space from normal to pre .

Automatically resolving relative URLs

If a relative URL is set as the barcode's content using the url function, or if it is retrieved from the href
attribute, PDFreactor will automatically try to resolve it according to the document's baseUrl .

Example 40: Creating a Grid Matrix containing a resolved URL

HTML:

CSS:

#gridmatrix {
 -ro-replacedelement: barcode;
 -ro-barcode-type: grid-matrix;
}

Note

If links (p. 91) are enabled, PDFreactor will automatically check whether the content of the barcode is a valid
URL and add the respective link.

Customizing the barcode color

By default, all barcodes will be rendered in black with a transparent background. To change the foreground
color, you can use the -ro-barcode-color property. If it is set to currentColor , the value of the
color property will be used.

Adjusting the barcode size

When adjusting the size of the barcode, you should differentiate between two aspects: On the one hand,
there is its natural size (also called intrinsic size), which is the size the barcode itself would have without the
influence of the layout around it. It depends on factors like the barcode type, its content and certain settings,
for example its ecc level .

And on the other hand, there is the specific size (also called extrinsic size), which is the size the barcode
actually consumes in the layout and the resulting document. It depends on the context and CSS styles of the
barcode element.

www.pdfreactor.com

4.9.4 Barcodes

75

https://www.pdfreactor.com/product/doc_html/index.html#Barcodes

Adjusting the specific size

The replaced element will be adjusted automatically to comply with the surrounding document's layout.
However, as the aspect ratio is not always preserved, this might result in distorted barcodes, i.e. having an
incorrect aspect ratio. This can be prevented by setting the object-fit property to contain .

Adjusting the natural size

For some barcode types, the -ro-barcode-size property can be used to select a certain sized version.
E.g. for a QR code, setting -ro-barcode-size to 10 would result in a version 10 QR code, which contains
57 x 57 modules.

For other types, like databar-expanded (p. 231) , the property adjusts the amount of columns which
should be used to store data. Applied to PDF417 codes, the property can additionally be used to adjust how
many rows are rendered.

Note

The value defined by -ro-barcode-size might be ignored in some cases, like when the selected size is not
sufficient to store the specified amount of data.

If applied to a one dimensional barcode, the property sets the bar height.

See

More detailed descriptions on how -ro-barcode-size behaves depending on the used barcode type can be found
in the appendix (p. 220).

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

76

Adjusting human readable text

For all barcode types that possess human readable text, some additional changes can be applied. The used
font can be customized using the -ro-barcode-font-size and -ro-barcode-font-family

properties. The position and alignment of the human readable text can be changed using the
-ro-barcode-human-readable-position property, which can also be used to remove it entirely. The
-ro-barcode-letter-spacing property can be used to adjust the human readable text's letter-spacing.

If the barcode type allows for affixes to be added to the human readable text, they can be configured using
the -ro-barcode-human-readable-affix property. A detailed list on which barcode types possess
affixes can be found in the appendix (p. 220).

Example 41: Creating a Code 128 without human readable text

HTML:

CSS:

#code-128-no-human-readable {
 -ro-replacedelement: barcode;
 -ro-barcode-type: code128;
 -ro-barcode-human-readable-position: none;
 -ro-barcode-content: "123456";
}

4.9.5 Object and Embed

PDFreactor supports the object and embed elements of HTML. You can use either element or a
combination of both to embed any type of data such as for example a flash animation. The most simple code
to do so is:

<embed src="myflash.swf" width="256" height="256"
 type="application/x-shockwave-flash"/>

Note

Besides flash you can also embed various other formats, e.g. videos. The data is embedded in the PDF, but whether or
not it is displayed depends on the formats supported by your PDF viewer.

4.9.6 Form Controls

PDFreactor supports HTML form elements. These form controls are non-interactive by default (but can be
made interactive (p. 93)). Their visual appearance may deviate from common web browsers to provide a look
and feel that is generally more appropriate for print media.

The default appearance of form elements is also not tied to the operating system like in browsers. In fact,
PDFreactor only provides a simple, printer-friendly appearance that is fully stylable via CSS. This means that
CSS properties such as color and padding also influence form controls like checkboxes and radio

www.pdfreactor.com

4.9.5 Object and Embed

77

buttons whereas these styles have usually no effect in browsers unless these form elements are styled with
appearance: none .

Enforcing browser-like behavior

Using CSS, the behavior can be made more browser-like if desired. The following example simulates the
appearance of checkboxes and radio buttons in web browsers and prevents other styles from interfering with
them. It contains CSS properties that are commonly used on form elements and uses values to approximate
browser rendering.

Example 42: Force and approximate browser-like checkboxes and radio buttons

input[type="checkbox"],
input[type="radio"] {
 background: white !important;
 border: 1pt solid lightgray !important;
 color: white !important;
 padding: 0 !important;
}
input[type="checkbox"]:checked,
input[type="radio"]:checked {
 background: cornflowerblue !important;
 border-color: cornflowerblue !important;
}

Note that the list of styles is not exhaustive and that the styles used are not necessarily ideal for interactive
controls.

See

See Interactive PDF Forms (p. 93) for information specifically about interactive form controls.

4.9.7 iframes

An iframe allows another document, for example content from other pages, to be embedded inside an
existing one.

The source document

There are two ways to define the inner document of an iframe. The first option is to use the src attribute
and specifying the URL from which the document should be loaded. The URL might be absolute or relative
and should refer to an HTML document.

The second option is useful if the inner document is very short and simple. When using the srcdoc
attribute, its value is set to be the inner document's source code.

<iframe src="https://www.pdfreactor.com" width="600" height="400">
</iframe>

<iframe srcdoc="<p>Hello World</p>">
 This is fallback text in case the user-agent does not support
 iframes.
</iframe>

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

78

Note

If both attributes have been set, srcdoc has priority over src .

Seamless

If the seamless attribute has been set, the iframe's document behaves as it would be in the document that
contains the iframe. That means that the width and height of the iframe are ignored and the inner document is
shown completely if possible.

Furthermore, the borders of the iframe are removed and most importantly all styles from the outer document
are inherited by the inner document.

When generating the PDF, the headings and other bookmark styles inside the iframe are passed through, so
they can be found in the bookmark list.

The seamless attribute is a boolean attribute, which means that if it is true it exists and false otherwise.
The only valid values of seamless are an empty string or "seamless" . The attribute can also be used
without any value:

<iframe src="https://www.pdfreactor.com" width="600" height="400"
 seamless>
</iframe>

Note

Generally, true and false are INVALID values for boolean attributes.

Customization

Using CSS styles, it is possible to customize the look and functionality of iframes.

The border, padding and margin can be set or removed with the appropriate styles.

iframe {
 border: none;
 padding: 0px;
 margin: 0px;
}

By default, if seamless is false neither style sheets nor inline styles are passed down to the iframe's
document. However, by using the property -ro-passdown-styles , this behavior can be customized.

When generating a PDF with the bookmarks feature enabled, the headings in the document are added as
bookmarks to quickly navigate the document.

Using the property -ro-bookmarks-enabled it is possible to enable or disable this feature for iframes,
thus allowing the headings of the inner document to be added to the bookmarks list or not. The property can
be either set to true or false . If the iframe is seamless, it is set to true by default.

<iframe src="https://www.pdfreactor.com" width="600" height="400"
 seamless="seamless" style="-ro-passdown-styles:stylesheets-only;
 -ro-bookmarks-enabled:false;">
</iframe>

www.pdfreactor.com

4.9.7 iframes

79

4.9.8 Canvas Element

PDFreactor has built-in support for the canvas element of HTML5. The canvas element is a dynamic image
for rendering graphics primitives on the fly. In contrast to other replaced elements the content of the canvas
element must be generated dynamically via JavaScript (p. 82), instead of referencing an external resource
that contains the content to be displayed (as is the case for example for images).

Below is a simple code fragment which renders shadowed text into a canvas element:

<head>
 <script type="text/javascript">
 function draw() {
 let ctx = document.getElementById("canvas").getContext('2d');
 ctx.font = "50px 'sans-serif'";
 ctx.shadowBlur = 5;
 ctx.shadowColor = "#aaa";
 ctx.shadowOffsetX = 2;
 ctx.shadowOffsetY = 2;
 ctx.fillStyle = "black";
 ctx.fillText("PDFreactor",0,50);
 }
 </script>
</head>
...
<body onload="draw();">
 <canvas id="canvas" width="400" height="300">
 Canvas element is not supported.
 </canvas>
</body>

Resolution Independence

PDFreactor by default does not use a resolution-dependent bitmap as the core of the canvas. Instead it
converts the graphics commands from JavaScript to resolution-independent PDF objects. This avoids
resolution-related issues like blurriness or pixelation.

Shadows cannot be convert to PDF objects. So those are added as images. This does not affect other
objects in the canvas.

Accessing ImageData of a canvas or setting a non-default composite causes that canvas to be rasterized
entirely.

This behavior can be configured using CSS:

The style -ro-rasterization: avoid disables functionality that causes the rasterization of the canvas.

The style -ro-rasterization: always forces the canvas to be rasterized in any case.

The property -ro-rasterization-supersampling configures the resolution at which the canvas or
shadows are rasterized. The default value is 2 , meaning twice the default CSS resolution of 96dpi. Accepted
values are 1 to 4 . Higher resolution factors increase the quality of the image, but also increase the
conversion time and the size of the output documents. This does not affect canvas objects that are not
rasterized.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

80

4.9.9 PDF Pages as Images

PDFreactor can losslessly embed pages from other PDFs as images in the document to be converted to PDF
or draw them into image output. To use a PDF as an image in a document, simply use the img element, like
you would for any other image. Example:

In the example above, the PDF image will always display the first page of the PDF. You can select which
page should be displayed using the CSS property -ro-source-page . The example below shows how to
display page 5 of the PDF:

By default the media box, i.e. the entire sheet, of the PDF page is visible and used for sizing. This can be
reduced to any other PDF page box like "crop" or "trim" via the property -ro-source-area . The
example below shows how to display only the crop box of the PDF page:

PDF images expose the page count of their source document to JavaScript via the proprietary property
roPageCount of the img HTML element. If the object is not a PDF image roPageCount will return 0 . In

the following example, let's assume we have a PDF image with the id "pdfimage":

let reportPdf = document.getElementById("pdfimage");
let pageCount = reportPdf.roPageCount;

Aside from using image elements, PDFs can be used in most places other images are supported. For
example, you can embed PDFs as background images. With the exception of being able to access the page
count using JavaScript, the behavior described above also applies to them:

.pdfBackground-2 {
 background-image: url("https://resources.myserver.com/backgrounds.pdf");

 /* Apply styles like -ro-source-page or -ro-source-area to the same element as
background image. */
 -ro-source-page: 2;
}

4.9.10 Filters and Shadows

Certain effects, like blurring, are not natively supported by the PDF format. In such cases, PDFreactor has to
generate an image of the corresponding element, with the effects already applied. The image can always be
displayed in the PDF and if necessary an invisible text overlay above the image ensures, that the text inside
the element can still be selected, copied and is accessible, e.g. to screen readers.

The CSS properties that require element rasterization are:

 box-shadow (only the shadow itself is rastered. The content of the element can be rendered as usual).

 filter

www.pdfreactor.com

4.9.9 PDF Pages as Images

81

 text-shadow

Note

When creating soft shadows or using blur filters, the blurring itself is a time-consuming task and can, depending on the
content to be generate, increase the creation time of the PDF significantly. Thus blurs and shadows should be used
with caution if the conversion time of the PDF is important.

The resolution of the resulting image can be customized via the -ro-rasterization-supersampling
property. The default value is 2 , meaning 192dpi, as a compromise between quality, performance and size.

Please note that increasing the resolution or applying shadows and filters on large or many elements will not
only increase the size of the converted PDF but may also slow down PDF readers.

As a safeguard against memory and performance issues, the maximum size of a single rasterized image can
be limited. By default an image will be rasterized to have less than 2 megapixels. This is still large enough to
cover an A4 page-sized image with the default supersampling. The CSS property
-ro-rasterization-max-size allows to customize or disable that limit.

Note

If the only filter function used is opacity , consider using the CSS property opacity instead. PDFreactor uses
native PDF functionality to render the transparent element, thus avoiding the drawbacks of rasterization.

4.10 JavaScript

Note

This chapter refers to JavaScript in the input document, processed by PDFreactor like in a browser. There are also:

 The JavaScript API that allows using PDFreactor from JavaScript in a browser (p. 30)

 Scripts added to the resulting PDFs, processed by the PDF-viewer (p. 109)

PDFreactor automatically processes JavaScript that is embedded into or linked from input HTML documents.

It is also possible to manually add scripts:

If desired, this functionality can be disabled as follows:

config.setUserScripts(
 new Resource().setContent("console.log('test')"));

All languages (p. 479)

config.setJavaScriptSettings(new JavaScriptSettings()
 .setDisabled(true));

All languages (p. 480)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

82

4.10.1 Limitations of Browser-Like Behavior

JavaScript processing during PDF conversion works like it does in a browser, with some exceptions:

 The delays of setTimeout or setInterval are applied only to the virtual time of JavaScript
processing and do not actually slow down the conversion.

 Alerts and other dialogs are logged and do not stop script processing.

 There are no browser-like security measures based on the origins of URLs ("cross-site scripting").
However, the Connection Security (p. 51) mechanism of PDFreactor is applied to all connections caused
by JavaScript. This has the advantage that XMLHttpRequest and Fetch can access file-URLs, when those
are allowed. Module "import" statements also can access any URL, incl. file, that is not prohibited.

JavasScript processing is subject to a few other limitations that will be eliminated in future versions of
PDFreactor:

 DOM access to elements inside embedded SVGs may be subject to minor limitations.

 Reading from and manipulating form DOM elements via their specific JS attributes and methods is not
fully supported.

 Coordinates (e.g. retrieved via getDOMRects) are relative to their pages, which might lead to
unexpected results in some situations.

 Redirects (e.g. changing window.location) are not possible.

 Scripting support in iframes is limited.

 When a module is imported from an absolute URL the modules it imports in-turn, directly or transitively,
must be specified as relative paths or absoltue URLs. Absolute paths will errouniously be resolved
against the origin of the root document.

 Support for import maps is limited to the "imports" module specifier map.

4.10.2 JavaScript Engines

PDFreactor uses a JavaScript implementation based on the JavaScript engine Oracle GraalJS. Previous
versions used Mozilla Rhino as JavaScript engine and that engine can still be enabled via a setting. However,
we recommend to only use it as a temporary solution for the rare cases when it supports scripts that GraalJS
does not yet handle correctly. Please note that Rhino only offers partial support for ECMAScript 2015 (ES6)
while GraalJS fully supports ECMAScript 2023 syntax.

Example 43: Changing the JavaScript engine to Rhino

4.10.3 Third-Party JavaScript Libraries and Frameworks

PDFreactor supports various third-party JavaScript libraries and frameworks. See JavaScript Support (p. 430)
for details.

config.setJavaScriptSettings(new JavaScriptSettings()
 .setJavaScriptEngine(JavaScriptEngine.RHINO));

All languages (p. 480)

www.pdfreactor.com

4.10.1 Limitations of Browser-Like Behavior

83

4.10.4 Proprietary Access to Layout Information

PDFreactor allows JavaScript access to some layout information via the proprietary object ro.layout (p. 201).

Descriptions

Many proprietary JavaScript functions return so-called Description objects: PageDescription ,
BoxDescription , etc. These objects provide layout information on the specific type of document item,

such as a document page.

The description objects contain information about the layout of its content. The properties of
PageDescription , BoxDescription and LineDescription can be found in the appendix JavaScript

Objects And Types (p. 201)

Note

Description objects are snapshots of the particular moment they were created. Changing the document after getting
one has no effect on them.

PageDescriptions

Describes the dimensions of a page and its rectangles as well as some further information. The rectangles
are described by using DOMRect . A PageDescription is retrieved via the index of the desired page. The
first page has the index 0.

Example 44: Retrieving the PageDescription of the second page in the document

let pageDesc = ro.layout.getPageDescription(1);

BoxDescriptions

Describes the position and dimensions of the rectangles of a box as well as some further information. The
rectangles are described by using DOMRect . A BoxDescription is retrieved via a DOM element, which
may have a box, multiple ones or none.

Example 45: Retrieving a BoxDescription from an element

let element = document.querySelector("#myElem");
let boxDescriptions = ro.layout.getBoxDescriptions(element);

if (boxDescriptions.length > 0) {
 let boxDescription = boxDescriptions[0];
}

LineDescriptions

Contains information about a line of text. It can be retrieved from a BoxDescription .

Example 46: Retrieving LineDescriptions from a BoxDescription

let lineDescriptions = boxDescription.lineDescriptions;

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

84

DOMRects

A DOMRect contains the position and dimensions of a rectangle. (see MDN)

To retrieve the DOMRect from Page- and BoxDescription use the getter functions that take an optional string
parameter. This parameter specifies the length unit of the values of the DOMRect and has to be one of the
following absolute CSS units: "px", "pt", "pc", "cm", "mm", "in" or "q". By default this value is "px".

Example 47: Retrieving a DOMRect (with dimensions in centimeters) from a BoxDescription

let marginRect = boxDescription.getMarginRect("cm");

Ranges

A Range represents a fragment of a document that can contain nodes and parts of text nodes. (see MDN)

4.10.5 PDF Output Options

It is possible to specify portions of the PDFreactor configuration in document JavaScript at runtime during the
conversion. This can be useful if you want to create PDF attachments dynamically, specify PDF-specific
settings like encryption on the fly, change the page order according to content-specific criteria, etc.

You can access these PDF output options via the proprietary object ro.pdf (p. 202). For a full list of supported
properties refer to JavaScript Objects and Types (p. 201). The default value of these properties is taken from
their respective configuration setting from your PDFreactor configuration. For example, if you have specified
the author to be "John Smith" in your configuration, the value of the ro.pdf.author property will also be
"John Smith" initially and can be changed as desired.

Note

This feature is disabled by default and needs to be explicitely enabled by allowing author API overrides (p. 52). Trying
to access the ro.pdf object when it is disabled causes an error to be thrown, which can be caught and handled in
the surrounding JavaScript.

www.pdfreactor.com

4.10.5 PDF Output Options

85

https://developer.mozilla.org/en-US/docs/Web/API/DOMRect
https://developer.mozilla.org/en-US/docs/Web/API/Range

Example 48: Creating dynamic attachments

In some cases it might be desirable to specify PDF attachments not in the PDFreactor API, but dynamically
via JavaScript, depending on the document. This example shows how to add a PDF attachment from
JavaScript.

ro.pdf.attachments.push({
 name: "log.txt",
 data: "My log text.",
 description: "A JavaScript log"
});

The data to attach can also be binary, e.g. an image generated by a canvas .

graphCanvas.toBlob((graphBlob) => {
 ro.pdf.attachments.push({
 name: "graph1975.png",
 data: graphBlob,
 description: "Statistics of 1975"
 });
});

Example 49: Removing a page

This example uses a custom page order to eliminate the third page from the document.

ro.pdf.pageOrder = "1..2,4..-1";

Example 50: Setting PDF properties

Even if the integration code specifies an author and a title in the configuration, these values can be
overridden at runtime.

Original configuration:

Override at runtime:

ro.pdf.author = "Stephen Hawking";
ro.pdf.title = "The Universe in a Nutshell";

4.10.6 Exporting Data From JavaScript

Sometimes it can be desirable to make data from JavaScript available to the PDFreactor integration for
further processing after the conversion has finished. You can export data from document JavaScript by
setting the JavaScript property ro.exports . The exported data can then be accessed in the API via the
javaScriptExports property of the Result object of the conversion.

config.setAuthor("Brian Greene");
config.setTitle("The Elegant Universe");

All languages (p. 481)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

86

You can export any data type with ro.exports (p. 201). However, since the property javaScriptExports
returns a string, the data will be converted internally. If the data type is not a string, PDFreactor will try to
convert it to JSON. This means that you can conveniently export JavaScript objects or arrays, and then parse
the data back from JSON. If the data can't be converted, a generic string representation of it is used or null
if none is available.

Note

While it is possible to export strings directly, it is generally recommended to only export JavaScript arrays or objects
which will be converted into JSON. If an empty string is exported, it is converted to null when accessed through the
Result object in the PDFreactor integration.

Example 51: Exporting data from JavaScript

Export an object:

ro.exports = {
 message: "my exported data",
 content: [1, 2, 3]
};

The resulting string is as follows:

{"message":"my exported data","content":[1,2,3]}

It can be retrieved from the javaScriptExports property of the Result object:

This string can then be parsed or processed further.

4.10.7 Timeouts and Limits

For various reasons scripts may run unnecessarily long or even endlessly. PDFreactor imposes various limits
to avoid long conversion times.

Most limits are intended for scripts that would run for an excessive amount of time because of the script
expecting an interactive browser environment. They end JavaScript processing but let the conversion
continue on.

String javaScriptExports = result.getJavaScriptExports();
All languages (p. 481)

www.pdfreactor.com

4.10.7 Timeouts and Limits

87

Limits that interrupt JavaScript, but not the conversion

Name Description Default
Value

maxScriptElements The maximum number of script elements in the document
(including ones generated by JavaScript) to be processed.That
amount of elements does not have to be in the document
simultaneously.

1,000,000

maxQueuedTasks The maximum number of tasks to be processed. Tasks include
everything that introduces JavaScript to be run, e.g. the callbacks of
events, observers and window.setTimeout.

1,000,000

maxTasksWithoutDomChange The maximum number of tasks to be processed while the DOM is
not modified.

1,000

maxTasksRepeated The maximum number of times the same tasks can be processed.
These executions of the task do not have to be consecutive.

1,000

maxVirtualTimeOffset The maximum number of seconds the virtual time of the JavaScript
environment may be forwarded. Virtual time is forwarded when
callbacks of window.setTimeout and similar function are
executed. It is not related to the wall-clock time in any way.

3,600 (1h)

However, some limits target erroneous or malicious scripts as well as complex scripts that end up running
endlessly due to missing functionality. Reaching one of those terminates the conversion with a matching
exception.

Limits that terminate the conversion with an exception

Name Description Default Value

statementLimit The maximum number of JavaScript statements to be executed.
Statements include, among other things, method calls, variable
assignments and loop iterations.

1,000,000,000
(1 billion)

timeout The maximum number of seconds (wall-clock time) JavaScript processing
may take. This is not related to the virtual time in any way.

3,600 (1h)

Example 52: Limiting JavaScript processing time

The following example limits JavaScript processing time to 20 seconds.

config.setJavaScriptSettings(new JavaScriptSettings()
 .setTimeout(20));

All languages (p. 482)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

4. Input Formats

88

4.10.8 awesomizr.js

The JavaScript library awesomizr.js is a collection of helpful functions for the use with PDFreactor. You have
to import the JavaScript and in some cases the corresponding CSS. Both the script and the css files are
located in the "PDFreactor/samples" directory.

You can add the library by using the PDFreactor configuration property userScripts . To add the
respective CSS, use the property userStyleSheets :

Note

Of course, the library and the style sheet can alternatively be imported by the document itself. However, please note
that some functions only work with PDFreactor.

The capabilities of awesomizr.js include:

 Rotating table headers to reduce the table header width (p. 139)

 Fitting wide tables onto narrow pages (p. 157)

 Adaptive Page Break Insertion (p. 148)

 Creating a Table of Contents (p. 153)

config
 .setUserStyleSheets(new Resource()
 .setUri("awesomizr.css"))
 .setUserScripts(
 new Resource()
 .setContent("import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();")
 .setSubtype(ResourceSubtype.JAVASCRIPT_MODULE));

All languages (p. 483)

www.pdfreactor.com

4.10.8 awesomizr.js

89

5. OUTPUT FORMATS

5.1 PDF Output

PDF is the default output format of PDFreactor.

Generally PDFreactor generates PDFs with the Adobe PDF version 1.5. However, some PDF features may
require viewers that support newer versions of PDF.

PDF/A (p. 96) and PDF/X (p. 98) conformance may force different PDF versions.

Note

The PDF documents created with PDFreactor may contain additional metadata, which may require a PDF reader that
is able to display a later version of Adobe PDF correctly.

Some features of PDFreactor are specific to the PDF output format:

5.1.1 Bookmarks

Fig. 1: Bookmarks in the Adobe Reader

PDFreactor adds bookmarks to your document automatically. This can be disabled by using the
disableBookmarks configuration property like this:

When the default HTML mode is enabled, some bookmark levels are applied by default, e.g. the following
ones for heading elements:

h1 { bookmark-level: 1;}
h2 { bookmark-level: 2;}
h3 { bookmark-level: 3;}
h4 { bookmark-level: 4;}
h5 { bookmark-level: 5;}
h6 { bookmark-level: 6;}

config.setDisableBookmarks(true);
All languages (p. 484)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

90

Using the bookmark-level style you can create bookmarks which link to arbitrary XML elements in your
PDF files.

element { bookmark-level: 1; }

Using this property, one can structure the specified elements within the bookmark view of the PDF viewer.
The elements are ordered in ascending order. The element with the lowest bookmark level is on top of the
bookmark hierarchy (similar to HTML headlines). Several bookmark levels can be set using the
bookmark-level style.

The property bookmark-state defines whether the entry is initially open, showing its descendants in the
bookmark view of the PDF viewer. With the property bookmark-label it is possible to define the bookmark
title. By default, the element's text content is used.

How the coordinate to scroll to is determined can be changed via the property -ro-destination-area ,
e.g. the scroll target can be offset by 1cm or the page the element is on can be used instead of the element
itself.

5.1.2 Links

PDFreactor adds links to your documents by default. This can be disabled by using the disableLinks
configuration property like this:

For HTML documents the following link styles are applied by default, enabling external and internal links:

a[href] { -ro-link: attr(href); }
a[name] { -ro-anchor: attr(name); }
[id] { -ro-anchor: attr(id); }

Using the styles -ro-link and -ro-anchor arbitrary elements can be defined to be links or anchors.

linkElement[linkAttribute] { -ro-link: attr(linkAttribute); }
anchorElement[anchorAttribute] { -ro-anchor: attr(anchorAttribute); }

Note

Some PDF viewers recognize URLs written in plain text and convert them to links. This happens independently of
PDFreactor and its settings and properties.

Please see Attachments (p. 108) for a way to embed target files into the output PDF instead of linking to
them.

The clickable areas of links

The proprietary property -ro-link-area can be used to specify how the 'clickable' areas of links are
determined.

This style is not inherited. It has to be set on the same elements as -ro-link, when those should deviate from
the default value: all .

config.setDisableLinks(true);
All languages (p. 484)

www.pdfreactor.com

5.1.2 Links

91

The scroll coordinate for internal links

How the coordinate to scroll to is determined for internal links can be changed via the property
-ro-destination-area on the target element, e.g. the scroll target can be offset by 1cm or the page the

element is on can be used instead of the element itself.

Links in Images

When links are enabled the following also create clickable links:

 Links in SVGs. The target is taken from the a element itself. The clickable area is the bounding
rectangle of all elements contained in that element.

 HTML image map links. The clickable area and target are based on the attributes of the area .

 Barcodes containing an absolute URL. Those are clickable in their entirety pointing to that URL.

5.1.3 Metadata

The title of a generated PDF document, as well as the additional metadata author , subject and
keywords , can be specified in multiple ways:

By default the <title> tag as well as various <meta> tags are read.

The metadata can also be read from other elements using the properties -ro-title , -ro-author ,
-ro-subject and -ro-keywords .

Note

When a metadata property applies to multiple elements the values are concatenated. Therefore it is recommended to
disable the default set elements when specifying other ones:

Example 53: Set the document title from first heading

/* Disable setting title from title or meta tags */
head * {
 -ro-title: none;
}
/* Set title from first heading */
body > h1:first-of-type {
 -ro-title: content();
}

The metadata of the document can be overridden from the API. The following metadata can be directly set by
PDFreactor:

 author – The author of the document

 title – The document's title

 subject – The subject of the document

 creator – The content creator

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

92

 keywords – Usually a comma-separated list of keywords for search engines

The code above creates metadata as shown in the screenshot below:

Fig. 2: Document properties dialog of Adobe Reader

Note

The PDF "producer" property, also known as "encoding software", cannot be overridden. It will always contain
PDFreactor's name and version as well as basic information about the used license. For security purposes, the version
number can be suppressed. See Hiding Version Information (p. 59) for more details.

Custom Properties

You can also add custom properties to the documents, for which you can define the name and value, e.g.

5.1.4 Interactive PDF Forms

HTML forms are rendered automatically by PDFreactor. In addition, you can also convert HTML forms to fully
functional interactive PDF forms (sometimes referred to as AcroForms) using the proprietary CSS property
-ro-pdf-format . This property must be specified for the forms you wish to convert to an interactive PDF

form.

Example form:

<form id="credentials">
 First Name: <input type="text" value="firstname" />
 Last Name: <input type="text" value="lastname" />
 <input type="submit" />
</form>

config
 setAuthor("John Doe")
 setTitle("Architecture of the World Wide Web, Volume One")
 setSubject("Architecture of the world wide web")
 setCreator("John's DoeNuts, Inc.")
 setKeywords("w3c, www");

All languages (p. 485)

config.setCustomDocumentProperties(
 new KeyValuePair("feedback address", "peter@miller.com"));

All languages (p. 486)

www.pdfreactor.com

5.1.4 Interactive PDF Forms

93

To convert the form with the ID "credentials" to an AcroForm, you can use this style declaration:

#credentials, #credentials > input { -ro-pdf-format: pdf; }

Using this style declaration, only the form with the ID "credentials" and the input fields contained in this form
are converted to an AcroForm when the PDF is rendered. Only the forms and form elements having this CSS
style are converted. You can convert all forms and input fields using this CSS code:

form, form input { -ro-pdf-format: pdf; }

HTML form elements are mapped to interactive PDF forms based on their type and attributes as follows:

Markup Mapped Form Type

<input type="text"/> Text Box

<input type="password"/> Text Box

<input type="checkbox"/> Check Box

<input type="radio"/> Radio Button

<input type="submit"/> Push Button

<input type="reset"/> Push Button

<input type="file"/> Text Box

<input type="hidden"/> None

<input type="image"/> Push Button

<input type="button" value="Button"/> Push Button

<input type="color"/> Text Box

<input type="date"/> Text Box

<input type="datetime-local"/> Text Box

<input type="date"/> Text Box

<input type="email"/> Text Box

<input type="month"/> Text Box

<input type="number"/> Text Box

<input type="range"/> Text Box

<input type="search"/> Text Box

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

94

Markup Mapped Form Type

<input type="tel"/> Text Box

<input type="time"/> Text Box

<input type="url"/> Text Box

<input type="week"/> Text Box

<button type="submit">Submit</button> Push Button

<button type="button">Button</button> Push Button

<button type="reset">Reset</button> Push Button

<select>

 <!-- Options -->

</select>

Combo Box

<select multiple>

 <!-- Options -->

</select>

List Box

<textarea></textarea> Text Area

5.1.5 Tagged PDF

Tagged PDF files contain information about the structure of the document. The information about the
structure is transported via so-called "PDF tags". Tagging a PDF makes it accessible to assistive technology
like screen readers. Please see the Accessibility (p. 178) chapter for further information. Furthermore,
depending on the application, it may improve the results of copy and paste or allow more advanced
processing of the PDF.

Using the addTags configuration property, you can add PDF tags to the PDF documents generated with
PDFreactor. If you are generating a PDF from HTML input, the HTML elements and the resulting layout are
automatically mapped to the appropriate PDF tag structures, so all you have to do is set the following
configuration property to enable this feature:

Note

PDF tagging is automatically enabled when it is required by a PDF conformance, like PDF/A-1a, PDF/A-3a (p. 96) or
PDF/UA (p. 97).

Continued

config.setAddTags(true);
All languages (p. 487)

www.pdfreactor.com

5.1.5 Tagged PDF

95

Note

For documents containing text in RTL (p. 161) direction that have to be accessible the property
-ro-glyph-layout-mode must not be set to speed , as that does only ensure that the text is in the correct order

visually, but not logically.

5.1.6 PDF/A Conformance

PDFreactor supports the creation of PDF/A-1a or PDF/A-3a conformant files, as well as other PDF/A sub-
formats, which, however, will not be covered in detail.

PDF/A is a family of ISO standards ("ISO 19005") for long-term archiving of documents. The goal of these
standards is to ensure the reproduction of the visual appearance as well as the inclusion of the document's
structure. All information necessary for displaying the document in the same way every time is embedded in
the file. Dependencies on external resources are not permitted. PDF/A-1a and PDF/A-3a also require the
output PDF documents to be tagged, providing accessible documents. PDFreactor will automatically ensure
the requirements are met as far as possible.

Many companies and government organizations worldwide require PDF/A compliant documents.

PDF/A-1a is the strictest PDF/A standard while the newer PDF/A-3a is more lenient, e.g. allowing
transparency and attachments.

PDF/A imposes the following restrictions, which PDFreactor automatically enforces (overriding configuration
settings), so no manual intervention is required unless noted otherwise:

 All used fonts are embedded.

 All images are embedded.

 Multi-media content is forbidden.

 PDF Script is prohibited. (Does not affect JavaScript in the source HTML document)

 Encryption is prohibited.

 Metadata included in the PDF is required to be standard-based XMP.

 Colors are specified in a device-independent manner. (see below)

 The PDF must be tagged. (PDF/A-1a, PDF/A-2a and PDF/A-3a only)

 Attachments are prohibited. (PDF/A-1 only)

 Transparency is prohibited (PDF/A-1 only), see image alpha channels in PDF/A-1 (p. 97).

PDF/A documents must use either RGB or CMYK colors exclusively (color keywords and gray colors will be
converted appropriately). By default RGB colors are expected. Using CMYK requires an output intent
including an ICC profile. (It is also possible to specify an RGB profile to replace the default sRGB .) Please
see ICC Profiles and Output Intents (p. 99).

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

96

To create a PDF/A conformant document, the configuration property conformance is used in the
PDFreactor integration, e.g.:

The supported PDF/A conformance levels are PDF/A-1a, PDF/A-1b, PDF/A-2a, PDF/A-2b, PDF/A-2u, PDF/
A-3a, PDF/A-3b and PDF/A-3u.

PDF/A-1 alpha channels

Images in PDF/A-1 document may have an alpha channel. However, the values in the channel may only be
the minimum and maximum, i.e. fully transparent and fully opaque. For images that violate that requirement
PDFreactor applies dithering to the alpha channel to create a valid one that approximates the original.

CSS colors may also not have alpha values. Those are not automatically removed. This can be enabled with
the ignoreAlpha configuration property, like this:

Please note that ignoring the alpha channel may lead to unexpected results.

Validation

PDFreactor can optionally validate the generated PDF against specified PDF/A or PDF/UA conformances
using the configuration property validateConformance . Validation is optional and might take several
minutes depending on the size and complexity of the document. It can be enabled like this:

When conformance validation is enabled, PDFreactor will throw an exception and terminate the conversion
should the document not validate against all specified conformances. If the PDF validates successfully, the
conversion will finish normally. In either case, the log (p. 41) will contain additional information about the
document’s validation status.

Recommendation

It is also possible to create documents that are PDF/UA (p. 97) compliant in addition to being PDF/A compliant,
combining the benefits of both formats for maximum accessibility and archivability. We highly recommend adding PDF/
UA conformance when creating PDF/A documents:

5.1.7 PDF/UA Conformance

PDF/UA is a standard for accessible PDF documents, which has been adopted as a recommendation or
requirement by many organizations worldwide.

config.setConformance(Conformance.PDFA3A);
All languages (p. 487)

config.setIgnoreAlpha(true);
All languages (p. 487)

config.setValidateConformance(true);
All languages (p. 488)

config.setConformance(Conformance.PDFA3A_PDFUA);
All languages (p. 488)

www.pdfreactor.com

5.1.7 PDF/UA Conformance

97

It primarily defines correct PDF tagging. The only other restriction that may require manual intervention is that
the document must have a title. (If the title is not specified in the input document, it can be set via the
configuration property title .)

When PDF/UA conformance is enabled PDF tagging is automatically enaled as well. Please see the
Accessibility (p. 178) chapter for further information.

To create a PDF/UA conformant document, the configuration property conformance can be used in the
PDFreactor integration, e.g.:

Recommendation

It is also possible to create documents that are PDF/A (p. 96) compliant in addition to being PDF/UA compliant,
combining the benefits of both formats for maximum accessibility and archivability. We recommend adding PDF/A-3a
conformance when creating PDF/UA documents, as long as the additional restrictions are met by the input document.

5.1.8 PDF/X Conformance

PDFreactor supports the creation of PDF/X conformant files, specifically PDF/X-1a:2001, PDF/X-3:2002, PDF/
X-1a:2003, PDF/X-3:2003, PDF/X-4 and PDF/X-4p. PDF/X restrictions and requirements are enforced as far
as possible, which may cause configuration settings to be overridden or conversions to fail with an error
message describing non-compliant content or settings that have to be resolved manually. The restrictions
and requirements of PDF/X include:

 All Fonts must be embedded.

 Multimedia content and non-printable annotations are prohibited.

 Encryption is prohibited.

 No scripts may be embedded. (This does not affect JavaScript in the input document.)

 Transparency is prohibited (except in PDF/X-4), see image alpha channels in PDF/A-1 (p. 97).

 Colors must be specified as CMYK, gray, keywords or spot. (PDF/X-3 relaxes this restriction to allow
RGB. However, this requires ICC profile based conversion, which not every print workflow can handle.)

 An output intent is required, consisting of an output condition identifier string and an ICC profile.
(Depending on the exact conformance and target environment it may be legal or required to omit the ICC
profile, as long as the identifier is known to the target environment. Constants for the default profiles of
Adobe Acrobat Pro DC are available for usage with PDF/X-4p. Please note that the availability of these
default profiles may vary between different versions of Acrobat Pro.) Please see ICC Profiles and Output
Intents (p. 99).

 The title metadata is required. Usually, it is set by the document's title element, but it can also be set by
the CSS property -ro-title . The third option is to set it via the configuration property title . Please
see Metadata (p. 92).

config.setConformance(Conformance.PDFUA);
All languages (p. 489)

config.setConformance(Conformance.PDFA3A_PDFUA);
All languages (p. 489)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

98

To create a PDF/X conformant document, the configuration property conformance can be used in the
PDFreactor integration, e.g.:

5.1.9 ICC Profiles and Output Intents

PDFreactor allows you to set the output intent of the PDF document, consisting of an identifier and an ICC
profile. This is required for certain PDF/A and PDF/X conformance modes, with the ICC profile being
optional in some cases. The example below demonstrates how to use the configuration property
outputIntent :

The property identifier sets a string identifying the intended output device or production condition in
human- or machine-readable form. The property url points to an ICC profile file and the property data
sets the binary data of such a profile, the latter having priority.

The color space of the output intent profile overrides the target color space.

5.1.10 Color Space Conversion

In cases when output PDF documents must consist only of colors and images of a certain color space, but
not all input documents and resources match that, you can enable color space conversion. For example, you
can convert all CSS colors and images to CMYK with a specified ICC profile matching the output intent of a
PDF/A or a PDF/X for printing:

config.setConformance(Conformance.PDFX4);
All languages (p. 490)

config.setOutputIntent(new OutputIntent()
 .setIdentifier("ICC profile identifier")

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 .setUrl("URL/to/ICC/profile")

 // Use this if you want to specify the ICC profile's binary data
 .setData(iccProfileByteArray)
);

All languages (p. 490)

// The required output intent
config.setOutputIntent(new OutputIntent()
 .setIdentifier("ICC profile identifier")
 .setUrl("URL/to/ICC/profile"));
// Color space conversion settings
config.setColorSpaceSettings(new ColorSpaceSettings()
 // The same profile as the output intent, required for accurate conversion to CMYK
 .setCmykIccProfile(new Resource().setUri("URL/to/ICC/profile"))
 // Not necessary to set in this case (overridden by output intent), but recommended
 .setTargetColorSpace(ColorSpace.CMYK)
 // Enable conversion of RGB colors and images to CMYK
 .setConversionEnabled(true));

All languages (p. 491)

www.pdfreactor.com

5.1.9 ICC Profiles and Output Intents

99

You can also create a web version, which is smaller and in RGB:

If cmykIccProfile is not set, naive conversion, similar to the one of PDF viewers, is used.

5.1.11 Print Dialog Prompt

PDFreactor can be configured to immediately display a print dialog when a PDF file created with PDFreactor
is opened. To do so, the printDialogPrompt configuration property must be used:

5.1.12 Compression

There are several factors that contribute to a PDFs resulting file size, such as the number of pages and
image resources. To achieve a smaller file size, you can use various compression methods which may be
more or less effective depending on the exact use case.

Image Compression

In some cases, the PDF contains many high-resolution images which are appropriate for print PDFs, but may
not be ideal for PDFs published on the web. For such a case, you can use CSS to compress and resample
images to ensure that their resolution does not exceed a specific value. This can be done with the proprietary
CSS property -ro-image-resampling , whose value represents the target resolution.

Example 54: Compressing large images

This example demonstrates how to convert large images into new images with a target resoluton of 72dpi.
Images that already have resolution smaller than 72dpi are not converted.

* {
 -ro-image-resampling: 72dpi;
}

Changing the resolution of an image is generally a lossy compression and will reduce the quality of an image.
To specify the compression algorithm and the quality of the resampled image, use the
-ro-image-recompression proprietary CSS property.

// (No output intent required)
// Color space conversion settings
config.setColorSpaceSettings(new ColorSpaceSettings()
 // When converting to RGB the profile is used for accurate conversion from CMYK
 .setCmykIccProfile(new Resource().setUri("URL/to/ICC/profile"))
 // Not necessary to set in this case (default), but recommended
 .setTargetColorSpace(ColorSpace.RGB)
 // Enable conversion of CMYK colors and images to RGB
 .setConversionEnabled(true));
// Reduce image sizes by resampling and compression
config.setUserStyleSheets(new Resource().setContent(
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 "* { -ro-image-resampling: 200dpi; "
 // recompress all images to JPEG with a quality of 90%
 + "-ro-image-recompression: jpeg(90%) }"));

All languages (p. 493)

config.setPrintDialogPrompt(true);
All languages (p. 496)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

100

Structure Optimization

PDFreactor automatically compresses certain PDF data strucutres such as tag trees to optimize the file size.
There may be certain situations where this optimization is undesired, e.g. when PDF version 1.4 is required.
In this case, the optimization can be disabled using the disablePdfStructureOptimization

configuration property.

5.1.13 Encryption and Restrictions

PDFreactor can protect generated PDF documents via 40 or 128 bit encryption.

To encrypt the output PDF, set the encryption strength to a value other than ENCRYPTION_NONE :

When the PDF document is opened, the user has to supply the user password in order to view the content.
When no user password is set, the PDF can be viewed by any user. In either case, certain restrictions are
imposed. These can be suspended by supplying the owner password. You can set the passwords as follows:

Though not recommended for security reasons, both passwords can be omitted. However, the owner
password must be specified for certain postprocessing steps, e.g. for digital signing (p. 106) or merging
(p. 104).

By default, all restrictions are imposed on the PDF document. You can, however, exclude selected ones by
using the following configuration properties:

Note

Encryption as well as restrictions are highly viewer dependent. If a PDF viewer does not implement them, some
restrictions may not be taken into account at all.

List of configuration properties to disable restrictions

Property name Allows ...

allowPrinting printing

allowCopy copying or otherwise extracting content

allowAnnotations adding or modifying annotations and interactive form fields

allowModifyContents modifying the content of the document

Continued

config.setDisablePdfStructureOptimization(true);
All languages (p. 496)

EncryptionSettings encryptionSettings = new EncryptionSettings();
encryptionSettings.setType(Encryption.AES_256);
config.setEncryptionSettings(encryptionSettings);

All languages (p. 497)

EncryptionSettings encryptionSettings = new EncryptionSettings();
encryptionSettings.setUserPassword("upasswd");
encryptionSettings.setOwnerPassword("opasswd");
config.setEncryptionSettings(encryptionSettings);

All languages (p. 497)

www.pdfreactor.com

5.1.13 Encryption and Restrictions

101

Property name Allows ...

allowDegradedPrinting printing (same as allowPrinting, however, with a limited resolution) (128 bit
encryption only)

allowFillIn filling in form fields (128 bit encryption only)

allowAssembly inserting, removing and rotating pages and adding bookmarks (128 bit encryption only)

allowScreenReaders extracting content for use by accessibility devices (128 bit encryption only)

See

API docs for further information.

5.1.14 Viewer Preferences

You can configure the initial presentation of the document in the viewer by setting viewer preferences.
Setting viewer preferences will activate / deactivate certain options of the viewer, for example it allows to hide
the viewer's toolbar when the document is opened.

Note that these preferences are not enforced, i.e. if you decide to set the HIDE_TOOLBAR preference, the
user can still display the toolbar again when viewing this PDF if he decides to do so. Setting this preference
only affects the default state of the toolbar when the document is opened, but does not enforce this state.

Some viewer preferences also influence the default settings of the print dialog of the viewer.

You can set viewer preferences by using the configuration property viewerPreferences , e.g.:

PDFreactor supports the following viewer preferences:

List of Viewer Preferences

Viewer Preference Effect

PAGE_LAYOUT_SINGLE_PAGE Display one page at a time.

PAGE_LAYOUT_ONE_COLUMN Display the pages in one column.

PAGE_LAYOUT_TWO_COLUMN_LEFT Display the pages in two columns, with odd numbered pages on
the left.

PAGE_LAYOUT_TWO_COLUMN_RIGHT Display the pages in two columns, with odd numbered pages on
the right.

PAGE_LAYOUT_TWO_PAGE_LEFT Display two pages at a time, with odd numbered pages on the
left.

Continued

Continued

config.setViewerPreferences(ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE,
 ViewerPreferences.DISPLAY_DOC_TITLE);

All languages (p. 498)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

102

Viewer Preference Effect

PAGE_LAYOUT_TWO_PAGE_RIGHT Display two pages at a time, with odd numbered pages on the
right.

PAGE_MODE_USE_NONE Show no panel on startup.

PAGE_MODE_USE_OUTLINES Show bookmarks panel on startup.

PAGE_MODE_USE_THUMBS Show thumbnail images panel on startup.

PAGE_MODE_FULLSCREEN Switch to full screen mode on startup.

PAGE_MODE_USE_OC Show optional content group panel on startup.

PAGE_MODE_USE_ATTACHMENTS Show attachments panel on startup.

HIDE_TOOLBAR Hide the viewer application's tool bars when the document is
active.

HIDE_MENUBAR Hide the viewer application's menu bar when the document is
active.

HIDE_WINDOW_UI Hide user interface elements in the document's window.

FIT_WINDOW Resize the document's window to fit the size of the first displayed
page

CENTER_WINDOW Position the document's window in the center of the screen.

DISPLAY_DOC_TITLE Display the document's title in the top bar.

NON_FULLSCREEN_PAGE_MODE_USE_NONE Show no panel on exiting full-screen mode. Has to be combined
with PageModeFullScreen.

NON_FULLSCREEN_PAGE_MODE_USE_OUTLINES Show bookmarks panel on exiting full-screen mode. Has to be
combined with PageModeFullScreen.

NON_FULLSCREEN_PAGE_MODE_USE_THUMBS Show thumbnail images panel on exiting full-screen mode. Has to
be combined with PageModeFullScreen.

NON_FULLSCREEN_PAGE_MODE_USE_OC Show optional content group panel on exiting full-screen mode.
Has to be combined with PageModeFullScreen.

DIRECTION_L2R Position pages in ascending order from left to right.

DIRECTION_R2L Position pages in ascending order from right to left.

PRINTSCALING_NONE Print dialog default setting: disabled scaling

Continued

Continued

www.pdfreactor.com

5.1.14 Viewer Preferences

103

Viewer Preference Effect

PRINTSCALING_APPDEFAULT Print dialog default setting: set scaling to application default value

DUPLEX_SIMPLEX Print dialog default setting: simplex

DUPLEX_FLIP_SHORT_EDGE Print dialog default setting: duplex (short edge)

DUPLEX_FLIP_SHORT_EDGE Print dialog default setting: duplex (long edge)

PICKTRAYBYPDFSIZE_FALSE Print dialog default setting: do not pick tray by PDF size

PICKTRAYBYPDFSIZE_TRUE Print dialog default setting: pick tray by PDF size

Note

The PAGE_LAYOUT_ preferences are overridden by the @-ro-preferences (p. 168) properties page-layout and
first-page-side-view .

5.1.15 Merging PDFs

A generated PDF can easily be merged with existing ones. To merge with a single PDF or multiple PDFs use
the mergeDocuments configuration property that declares either URLs to or binary data of existing PDF
files.

Whether the generated PDF is appended or laid over the existing PDFs depends on the general type of
merge:

 Concatenation

 Arrange

 Overlay

Concatenation merges append the generated PDF before or after the existing ones. The following sample
shows how to append the generated PDF after the existing one:

To append the generated PDF before the existing ones use MergeMode.PREPEND .

Continued

MergeSettings mergeSettings = new MergeSettings();
mergeSettings.setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid1.pdf"),
 new Resource().setData(pdfBytes));
config.setMergeSettings(mergeSettings);

All languages (p. 499)

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/appendDoc.pdf"))
 .setMode(MergeMode.APPEND);
config.setMergeSettings(mergeSettings);

All languages (p. 500)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

104

Arrange inserts specified pages of PDFs into the generated PDF. This merge mode has to be combined with
pageOrder (see Page Order (p. 157)) in order to specify which page should be inserted where. The

following sample shows how to insert the first page of an existing PDF after the second page of the
generated one:

More information on the syntax can be found at Merge Mode Arrange (p. 158)

Overlay merges add the generated PDF above or below existing PDFs. The following sample shows how to
overlay an existing PDF:

To add the generated PDF below the existing one use MergeMode.OVERLAY_BELOW .

PDFreactor allows to repeat the pages of PDFs with less pages than other PDFs involved in the merger. The
configuration property overlayRepeat offers different options to do this:

 repeat only the last page

 repeat all pages of the PDF

 do not repeat any pages

 trim to page count of the shorter document

In the following example, all pages are repeated:

The default merge behavior of PDFreactor is a concatenation after the pages of the existing PDFs.

When overlaying documents that have differing page sizes, use the overlayFit property to configure how
overlay pages that have different dimensions from thepages they are overlaying should be resized.

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/insert1.pdf"),
 new Resource().setUri("https://www.myserver.com/insert2.pdf"))
 .setMode(MergeMode.ARRANGE);
config.setMergeSettings(mergeSettings);
config.setPageOrder("1,1:1,2..-1");

All languages (p. 501)

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY);
config.setMergeSettings(mergeSettings);

All languages (p. 502)

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY)
 .setOverlayRepeat(OverlayRepeat.ALL_PAGES);
config.setMergeSettings(mergeSettings);

All languages (p. 504)

www.pdfreactor.com

5.1.15 Merging PDFs

105

In the following example, the overlaying page keeps its aspect ratio but will be clipped to fit:

When overlaying pages, annotations present in the overlay are preserved by default. This behaviour can be
configured using the property disableOverlayAnnotations .

The following example shows how to disable overlay annotations so that they are not embedded:

By default, merging documents will if exceptions occur during the merge operation. If you want the merge to
proceed and merge documents with errors simply to be omitted if they contain errors, you can enable the
error policy IGNORE_INVALID_MERGE_DOCUMENTS_EXCEPTION to do so. Please see Error Policies (p. 45)
for details.

5.1.16 Digital Signing

PDFreactor is able to sign the PDFs it creates. This allows to validate the identity of the creator of the
document. A self-signed certificate may be used. A keystore file in which the certificate is included, is
required to sign PDFs with PDFreactor.

The keystore type is required to be one of the following formats:

 "pkcs12"

 "jks"

Note

To create a keystore from certificate(s) or read information of an existing keystore such as the keyAlias , the Oracle
Keytool can be used.

PDFreactor supports various certificates types to sign a PDF such as self-signed certificates. Please see the
API documentation for details on these modes.

To sign a PDF digitally use the configuration property signPDF :

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY)
 .setOverlayFit(OverlayFit.COVER);
config.setMergeSettings(mergeSettings);

All languages (p. 505)

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY)
 .setDisableOverlayAnnotations(true);
config.setMergeSettings(mergeSettings);

All languages (p. 506)

config.setSignPDF(
new SignPDF()
 .setKeyAlias("keyAlias")
 .setKeystorePassword("keyStorePassword")
 .setKeystoreType(KeystoreType.JKS)
 .setKeystoreURL("http://myServer/Keystore.jks")
 .setSigningMode(SigningMode.SELF_SIGNED));

All languages (p. 507)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

106

Note

To specify the keystoreURL as file URL use the following syntax: file:///path/to/Keystore.jks

Note

If a PDF is signed via the VeriSign signing mode, a plugin for the PDF viewer is required to show the signature.

5.1.17 Font Embedding

By default, PDFreactor automatically embeds the required subsets of all fonts used in the document. This
can be disable using the configuration property disableFontEmbedding .

Doing so reduces the file size of the resulting PDF documents. However, these documents are likely to not
look the same on all systems. Therefore this property should only be used when necessary.

5.1.18 Overprinting

Overprinting means that one color is printed on top of another color. For example, a background is printed
completely, before the text is put on top. As this is a feature for printing it should be used with CMYK colors.

PDFreactor can set the values of the PDF graphics state parameters "overprint" and "overprint mode" via
CSS. However, before the CSS properties have any effect, overprinting must first be enabled via the
configuration property addOverprint :

Then using the styles -ro-pdf-overprint and -ro-pdf-overprint-content you can specify the
overprint properties of elements and their content to either none (default), mode0 or mode1 (nonzero
overprint mode).

-ro-pdf-overprint affects the entire element, while -ro-pdf-overprint-content only affects the
content of the element (not its borders and backgrounds). In both cases the children of the element are
affected entirely, unless overprint styles are applied to them as well.

The following example sets small text on solid background to overprint, without enabling overprinting for the
background of either the paragraphs or the highlighting spans:

p.infobox {
 border: 1pt solid black;
 background-color: lightgrey;
 color: black;
 font-size: 8pt;
 -ro-pdf-overprint-content: mode1;
}
p.infobox span.marked {
 background-color: yellow;
 -ro-pdf-overprint: none;
 -ro-pdf-overprint-content: mode1;
}

config.setDisableFontEmbedding(true);
All languages (p. 508)

config.setAddOverprint(true);
All languages (p. 509)

www.pdfreactor.com

5.1.17 Font Embedding

107

Note

When having small text with a background, overprinting can be very helpful to avoid white lines around the text, if the
printing registration is imperfect.

5.1.19 Attachments

Alternatively to linking to external URLs (see Links (p. 91)) PDFreactor also allows embedding their content
into the PDF.

Attachments can be defined via CSS, which can be enabled by the configuration property
addAttachments :

The following styles can be used to specify attachments:

 -ro-pdf-attachment-url :

A URL pointing to the file to be embedded. This URL can be relative.

 -ro-pdf-attachment-name :

The file name associated with the attachment. It is recommended to specify the correct file extension. If
this is not specified the name is derived from the URL.

 -ro-pdf-attachment-description :

The description of the attachment. If this is not specified the name is used.

 -ro-pdf-attachment-location :

 element (default): The attachment is related to the area of the element. Viewers may show a
marker near that area.

 document : The file is attached to the document with no relation to the element.

Attachments can be specified for specific elements as follows:

#downloadReport {
 -ro-pdf-attachment-url: "../resources/0412/report.doc";
 -ro-pdf-attachment-name: "report-2012-04.doc";
 -ro-pdf-attachment-description: "Report for April of 2012";
}

Strings can be dynamically read from the document using the CSS functions attr and content , that read
specified attributes or the text content of the element respectively. Using those, certain a -tags can be
changed from links to attachments:

.downloadReports a[href] {
 -ro-link: none;
 -ro-pdf-attachment-url: attr(href);
 -ro-pdf-attachment-description: content() " (" attr(href) ")";
}

config.setAddAttachments(true);
All languages (p. 509)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

108

Attachments can also be set via the configuration property attachments . This configuration property also
allows specifying the content of the attachment as a byte array instead of an URL, so dynamically created
data can be attached:

Attaching Debug Files

PDFreactor offers a number of debug files containing useful information about the conversion, e.g. logs.
These can be attached to the PDF by specifying a special URL for the attachment. Please refer to
Development and Debugging Tools (p. 46) for an overview of all available debug files. Note that some debug
files might require additional configuration options, such as Observing Document Content (p. 43).

5.1.20 PDF Script

Note

This chapter refers to Scripts added to the resulting PDFs, processed by the PDF-viewer. There are also:

 JavaScript in the input document, processed by PDFreactor like in a browser (p. 82)

 The JavaScript API that allows using PDFreactor from JavaScript in a browser (p. 30)

Some PDF viewers (e.g. Adobe Reader) allow the execution of JavaScript, which has been added to the PDF.
This way, the document can be changed and dynamic content can be added long after the conversion is
complete. Of course the structure of the PDF is different from the HTML and addressing certain elements
with PDF scripts has to be done differently.

Please note, that support for PDF scripts is not wide spread among PDF reader software.

PDFreactor allows to add such scripts using the configuration property pdfScriptAction . The parameters
are the script as a string and the event which should trigger the script.

The supported events are:

 open: These scripts are triggered when opening the PDF in a viewer.

 close: These scripts are triggered when closing the PDF.

 before save: These events are triggered just before the viewer saves the PDF.

 after save: These events are triggered after the viewer has saved the PDF.

 before print: These events are triggered just before the viewer prints the PDF.

 after print: These events are triggered after the viewer has printed the PDF.

config.setAttachments(
 new Attachment()
 .setData("sample attachment text".getBytes())
 .setName("sample.txt")
 .setDescription("a dynamically created attachment containing text"),
 new Attachment()
 .setUrl("../resources/0412/report.doc")
 .setName("report-2012-04.doc")
 .setDescription("Report for April of 2012"));

All languages (p. 510)

www.pdfreactor.com

5.1.20 PDF Script

109

Note

These PDF scripts must not be confused with the JavaScript that is executed while creating the PDF. PDF scripts
basically use the JavaScript syntax, however, they are executed (if this feature is supported and enabled by the viewer
application) at a completely different time, e.g. when opening the PDF.

Example 55: Adding a PDF script using the API

The following PDF script will display a message prompt when the PDF is opened.

5.1.21 Preview Images

While most PDF viewers automatically generate page thumbnails to preview pages, PDFreactor can do this
during the conversion and embed these preview images. This frees up PDF viewer resources and is
especially useful for large documents. You can let PDFreactor create preview images with the
addPreviewImages configuration property like this:

5.1.22 Custom XMP

When using conformance such as PDF/A (p. 96), PDF/X (p. 98) or PDF/UA (p. 97) as well as other features,
PDFreactor automatically creates and appends an appropriate XMP to the generated PDF.

Custom XMPs can be loaded via content or uri . You also need to specify a priority , which can be
HIGH (which means that the custom XMP replaces the one generated by PDFreactor) or LOW (which

means that the custom XMP is only attached if PDFreactor did not generate one).

Example 56: Attaching a custom XMP

Important

When attaching a custom XMP with high priority (thus overriding the PDFreactor-generated XMP), conformance such
as PDF/A cannot be guaranteed.

5.2 Image Output

In addition to PDF, PDFreactor, with the optional Raster Image Output, supports the following image output
formats:

 PNG (optionally with transparent background)

 JPEG

config.setPdfScriptAction(new PdfScriptAction()
 .setScript("app.alert('hello');")
 .setTriggerEvent(PdfScriptTriggerEvent.OPEN));

All languages (p. 511)

config.setAddPreviewImages(true);
All languages (p. 512)

config.setXmp(new Xmp()
 .setPriority(XmpPriority.HIGH)
 .setUri("http://cdn/myXmp.xml"));

All languages (p. 513)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

110

 GIF (optionally dithered)

 TIFF (supports multi-page images; can use the following compression methods: LZW, PackBits,
Uncompressed, CCITT 1D, CCITT Group 3 & CCITT Group 4; CCITT optionally dithered)

 BMP

These can be selected using the configuration property outputFormat , e.g.:

The later two parameters set the width and height of the resulting images in pixels. If either of these is set to
a value of less than 1 it is computed from the other value and the aspect ratio of the page.

Independent of the image type, the maximum size of any output image that PDFreactor can produce is 500
megapixels.

See

Media Features (p. 164) for the media feature -ro-output-format , which allows setting styles specific for PDF or
image output.

5.2.1 Selecting a page

All image output formats, except for the TIFF formats, create an image of a single page. By default, this is the
first page. A different page can be selected using the configuration property pageOrder , e.g.:

5.2.2 Converting a Document Into Multiple Images

To convert a document into multiple images, you have to set the multiImage parameter of your
OutputFormat to true e.g. like this:

The documentArray property of the Result object then returns an array of byte arrays, each containing
an image representing one page of the document.

config.setOutputFormat(new OutputFormat()
 .setType(OutputType.PNG)
 .setWidth(512)
 .setHeight(-1));

All languages (p. 513)

config.setPageOrder("5");
All languages (p. 514)

config.setOutputFormat(new OutputFormat()
 .setType(OutputType.PNG)
 .setWidth(512)
 .setHeight(-1)
 .setMultiImage(true));

All languages (p. 515)

www.pdfreactor.com

5.2.1 Selecting a page

111

5.2.3 Continuous Output

The configuration property continuousOutput sets PDFreactor to continuous mode. In this mode each
document is converted into one image. Also screen styles will be used and print styles will be ignored,
resulting in a very browser-like look for the output image.

The first parameter sets the width of the layout. This has the same effect as the width of a browser window.
This only changes the layout. The result will still be scaled to the width specified by outputFormat The
second parameter sets the height. This has the same effect as the height of a browser window, i.e. it will cut
off the image or increase its height. Values of less than 1 cause the laid out height of the document to be
used.

5.2.4 Grayscale Image

PDFreactor can optionally output images that are entirely grayscale, i.e. that are composed exclusively of
shades of gray via the forceGrayscaleImage configuration property.

5.2.5 Color Space Conversion

For JPEG and (non-CCITT) TIFF output the images can be converted to CMYK before encoding. Conversion
is done using a specified ICC profile or naively if there is none.

config.setContinuousOutput(new ContinuousOutput()
 .setWidth(1024)
 .setHeight(768));

All languages (p. 516)

config.setForceGrayscaleImage(true);
All languages (p. 516)

config.setColorSpaceSettings(new ColorSpaceSettings()
 .setConversionEnabled(true)
 .setTargetColorSpace(ColorSpace.CMYK)
 .setCmykIccProfile(new Resource().setUri("URL/to/optional/ICC/profile")));

All languages (p. 517)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

5. Output Formats

112

6. LAYOUT DOCUMENTS
This chapter provides information on how to lay out documents, while focusing on the differences of the
paginated layout of PDFreactor, in contrast to the continuous layout of browsers.

The document layout mostly depends on CSS but there are PDFreactor configuration properties and
JavaScript functionality that may also be of use to achieve the desired results. While the common CSS
properties known from browsers are supported as well, they are not covered in this chapter. Therefore an
understanding of basic CSS is required.

6.1 Pagination

PDFreactor renders HTML and XML documents on pages. The rules to achieve that are provided by CSS.

The document content is laid out page by page, whenever there is no more space left on a page, PDFreactor
automatically breaks text and boxes to the next.

Note

Basic page styles are provided for HTML. Page styles for XML documents need to be created based on the documents
language.

6.1.1 Layout at Breaks

Boxes around or next to breaks are subject to minor adjustments depending on the situation:

Between Blocks

The top margin of the first block on a page or column is ignored, except for the first page or column and for
breaks forced via CSS. This difference can be eliminated by setting the proprietary property
-ro-truncate-margin-after-break to always or none to ensure this adjustment is performed in all

or no cases, respectively.

Note

Applying styles to an element that change its formatting context, like overflow with a value other than visible ,
may stop margins from being truncated.

www.pdfreactor.com

6. Layout Documents

113

A non-proprietary alternative, that also affects the layout of documents in browsers (especially relevant for
multi-column) is to explicitly set specific top margins to 0.

Example 57: Removing certain margins to ensure content starts at the same height for all pages and
columns

h1 {
 break-before: page;
 margin-top: 0;
}

div.multiColumn > *:first-child {
 margin-top: 0;
}

The bottom margin of the last block on a page or column is always ignored.

Inside Blocks

When a break occurs inside a block (e.g. between two lines of text in a paragraph) the block is split into two
parts. There is no border, margin or padding at the bottom of the first part or the top of the second one.
Setting the property box-decoration-break to clone forces the inclusion of these borders and
paddings. This does not affect the margins.

Images

By default no breaks can occur inside images and other replaced elements. In cases when this is required
the proprietary property -ro-object-slice can be set to the values auto or avoid to explicitly allow
breaks inside block images. To avoid too small parts of images to be split-off at the beginning or end the
orphans and widows properties, multiplied by the computed line-height , are taken into account.

6.1.2 Page Selectors

To create an individual page layout pages need to be selected with CSS. In principle it works the same way
as selecting an element, but the selector is different.

To select all pages of the document, the @page rule is used instead of the usual element selector.

Example 58: A one inch wide page margin on all pages

@page {
 margin: 1in;
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

114

:first , :left , :right and other page specific pseudo-classes (p. 418) make it possible to style
specific pages, like the first ones, e.g. for cover pages or subsets, like left pages.

Example 59: Definition of larger inside margins for binding

@page {
 margin: 0.5in;
}
@page:left {
 margin-right: 0.75in;
}
@page:right {
 margin-left: 0.75in;
}

Note

Which pages are left or right can be specified via the @-ro-preferences (p. 168) property first-page-side

Nth Page

It is possible to select any page by using the prefixed CSS3 pseudo-class :-ro-nth() . This pseudo-class
takes a function of the form An+B , similar to the pseudo-class :nth-child() .

A single page can be selected (e.g. :-ro-nth(3) selects the third page) or the function can be used to
select multiple pages. For example, :-ro-nth(2n) selects every second page (i.e. even pages),
while :-ro-nth(2n+1) selects the first and every other page (odd pages).

Note that the selected page number is independent of the page counter, which is used to display page
numbers and which can be manipulated.

This pseudo-class can also be used in combination with page names. For more information see Page Groups
(p. 116).

Last Page

As the counterpart to :first , there is the proprietary selector :-ro-last . It allows to select the last page
of the document.

Please note that as the content of the last page is only known after its content has been computed, there can
be situations where the last page is empty. This can happen if the styles that are applied to the last page
influence the layout of the page content, e.g. changing the page margins.

6.1.3 Page Size & Orientation

The size and orientation of a page can be set with the size property. PDFreactor supports many different
page sizes, see Appendix Supported Page Size Formats (p. 247).

Example 60: All pages in format 'letter' and portrait orientation

@page {
 size: letter portrait;
}

www.pdfreactor.com

6.1.3 Page Size & Orientation

115

To set a page to landscape orientation, "portrait" is replaced by "landscape":

Example 61: All pages in format 'letter' and landscape orientation

@page {
 size: letter landscape;
}

Instead of setting fixed page formats with a specified orientation it is also possible to set two length values.
These then define page size and orientation.

Example 62: A page size of 4.25 inches by 6.75 inches for all pages

@page {
 size: 4.25in 6.75in;
}

6.1.4 Named Pages

With named pages an element is able to create and appear on a special page that has a name. This name
can be used as part of a page selector to attach additional style properties to all pages of that name.

To create a named page, an element receives the page property with a page name as identifier.

Example 63: Using named pages

All HTML <table> elements have to appear on pages with the name pageName .

table {
 page: pageName;
}

A page break will be inserted before an element that has the page property set. Another page break will be
inserted for the next element that defines a different page name (or none) to ensure the Named Page only
contains elements that specify its name.

To attach styles to a named page, the page name is added to the @page rule. The page name is not a
pseudo-class like :first for example. There is a space between @page and the page name, not a colon.

Example 64: A Named Page with 'letter' format and landscape orientation

@page pageName {
 size: letter landscape;
}

Page Groups

When setting a page name, a page group of this name is created automatically. Compared to named pages,
page groups are more flexible and can be used to select a certain page, e.g. the first page with a name
instead of all pages with that name.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

116

While each page can have only one name, it can belong to multiple page groups, thus allowing an author to
nest special pages. This means that if an element sets a page name to 'A', that page belongs to a page group
of the same name, but can also belong to a group named 'B', if that group was defined by a parent element.

Example 65: Nested Named Pages

The following sample applies page orientation and page background color to the same page, by using two
page groups.

HTML:

<section>
 <table class="landscape"> ... </table>
</section>

CSS:

section {
 page: outerGroup;
}
.landscape {
 page: innerGroup;
}
/* Make all pages named 'outerGroup' lightblue */
@page :-ro-nth(n of outerGroup) {
 background-color: lightblue;
}
/* Make all pages named 'innerGoup' landscape */
@page :-ro-nth(n of innerGroup) {
 size: A4 landscape;
}

In contrast to named pages, it is possible to create a new group even if the page name did not change. To do
so, two adjacent elements, both defining the same page name, have to be divided by a forced page break.

Another advantage of page groups, is the possibility to select certain pages belonging to a group name. This
is especially useful, if the first page of a group should have different styles. To select the nth-page of a group,
the -ro-nth(An+B of pageName) pseudo class is used:

Example 66: Selecting Pages in a Group

Select the first page of each page group with the name pageName .

@page :-ro-nth(1 of pageName) {
 background-color: lightgrey;
}

For more information on the syntax of the -ro-nth() pseudo class, please see Nth Page (p. 115).

6.2 Breaking Text

Text is broken whenever there is not enough space left, e.g. inside the line or on the page.

www.pdfreactor.com

6.2 Breaking Text

117

6.2.1 Automatic Hyphenation

Automatic Hyphenation allows breaking words in a way appropriate for the language of the word.

To use Automatic Hyphenation two requirements must be met:

 The text to hyphenate requires a language set in the document.

 The language set for the hyphenated text is supported by PDFreactor (see Appendix Supported
Hyphenation Languages (p. 249) for more information)

The lang attribute in HTML or the xml:lang attribute in XML allow defining a language for the document
and on individual elements, in case they deviate from the document language.

Example 67: An entire HTML document in English language

<html lang="en">
 ...
</html>

Hyphenation is enabled or disabled via CSS with the hyphens property:

Example 68: Enabling hyphenation except for specific elements

Hyphenation enabled for an entire document except for paragraphs of the noHyphenation class.

html {
 hyphens: auto;
}
p.noHyphenation {
 hyphens: none;
}

In addition it is possible to specify the number of minimum letters before or after which text can be broken
within a word. This is done with the hyphenate-before and hyphenate-after properties.

The number of successive lines that all end with hyphenated words can be limited with the
-ro-hyphenate-limit-lines property. Instead of being automatically hyphenated, the word is then

moved into the next line, if possible.

6.2.2 Widows & Orphans

Definition: Widow

If the last line of a paragraph is also the first line of a page it is called a widow.

Definition: Orphan

If the first line of a paragraph is also the last line of a page it is called an orphan.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

118

By default, PDFreactor avoids widows and orphans by adding a page break before the paragraph. This
behavior can be changed with the CSS properties widows and orphans .

Example 69: Widows & Orphans set to an amount of two lines

p {
 orphans: 2;
 widows: 2;
}

Changing the value to 1 will allow widows and orphans. Changing it to higher integer values will prevent even
multiple line widows and orphans. (e.g.: orphans: 5 means that if the first 4 lines of a paragraph are the
last 4 lines of a page these lines are considered an orphan.)

6.2.3 Customizing Line Breaks

By default, the rules for breaking words are defined by the Unicode Standard21. In certain situations however,
you may want to define specific break opportunities and forbid others. While this can be done using white-
space and soft-hyphens, PDFreactor provides a more convenient way for general rules. The proprietary
property -ro-line-break-opportunity allows to precisely define between which characters a break is
allowed or forbidden.

Specifying this is done via Regular Expression (Regex), excluding lookaheads or lookbehinds. Though the
syntax may look confusing to those that are unfamiliar with Regex, it allows to define any possible break
opportunity. The property value is divided in up to three parts:

1. normal: This optional identifier specifies that the default rules still apply. Thus the existing rules are
only extended instead of being completely overridden.

2. <whitelist>: These regex expression describe where break opportunities should be added.

3. <blacklist>: The blacklist is separated with a slash and describes where break opportunities should be
removed. The blacklist is stronger than the whitelist and overrides it in the case of a conflict.

Both, whitelist and blacklist, describe the character matching using one or two strings. The first string
describes the content that must come before, the second what must come after the break opportunity. The
second string can be omitted, while the first string can be an empty string if it is not needed. In regex terms,
the first string is a lookbehind, the second is a lookahead, hence the slightly reduced syntax.

Note

As the strings are specified in CSS, each backslash must be escaped. For example an escaped opening parenthesis
would require two backslashes. One to escape the parenthesis for regex and one to escape the backslash for CSS:
"\\("

Alternatively the character can be placed inside brackets instead of escaping it: "[(]"

A common use case of this property is when trying to break a file path or other technical strings where
normal breaking rules are not applied.

21 See Unicode Standard Annex #14 - Unicode Line Breaking Algorithm - https://www.unicode.org/reports/tr14/

www.pdfreactor.com

6.2.3 Customizing Line Breaks

119

https://www.unicode.org/reports/tr14/

Examples

Property Value Effect

normal "[(]" Allow breaks after a left parenthesis, in addition to the standard Unicode line breaking
rules.

normal / "-" Standard Unicode line breaking rules are applied, but prevents breaks after a dash.

normal "[.]" "\\w" Allow breaks after a dot followed by a word character, in addition to the standard
Unicode line breaking rules.

normal / "-" "\\w" Standard Unicode line breaking rules are applied, but prevents breaks after a dash
followed by a word character.

normal "\\w" "[(]" / "\\w" "[(][)]"Allow breaks after a word character followed by a left parenthesis, except if a left and a
right parenthesis follows, in addition to the standard Unicode line breaking rules.

normal "[(]" / "[(]" '"'Allow breaks after a left parenthesis, except if it is followed by a quote, in addition to
the standard Unicode line breaking rules.

"\\s" Only allow breaks after a whitespace character. Standard Unicode line breaking rules
aren't applied.

"\\s", "-" / "-" "\\d", "-" "[a-Z]"Only allow breaks after a whitespace character or a dash, except if a dash is followed
by a digit or word character. Standard Unicode line breaking rules aren't applied.

Note

Long and complex rules (especially those that include wildcards) can impact the performance depending on the length
of the paragraphs, so it is best practice to apply the style only to the elements that may actually need them.

6.3 Generated Content

Generated content does not originate from the document. It is created by CSS during the rendering process
and appears in the rendered result as if it was part of the document.

The pseudo-elements ::before and ::after are used to generate content before or after an element.
The actual content is created with the content property.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

120

6.3.1 Generated Text

To create generated text, set a String as value of the content property.

Example 70: Generated text on an element

Generated Text on an HTML <div> element.

HTML:

<div>This is a note.</div>

CSS:

div::before {
 /* Adds the text "Note:" at the start of the element. */
 content: "Note:";

 padding-right: 0.1in;
 font-weight: bold;
}
div {
 border: 1px solid black;
 background-color: palegoldenrod;
 padding: 0.1in;
}

As a result, the <div> would look like this:

Note: This is a note.

Sometimes it is necessary to add an explicit line break to generated text. To create such a line break, a
"\A " (an escaped line break character followed by a space) needs to be added to the String and the
white-space property needs to be set to either pre , pre-wrap or pre-line .

Example 71: An explicit line break inside Generated Text

div::before {
 content: "RealObjects\A PDFreactor";
 white-space: pre;
}

The result would look like this:

RealObjects
PDFreactor

www.pdfreactor.com

6.3.1 Generated Text

121

6.3.2 Generated Images

A generated image can be created with the image's URL set as value of the content property.

Example 72: A Generated Image with an SVG image as source

h1::before {
 content: url("https://mydomain/pictures/image.svg");
}

6.3.3 Counters

Counters can be used to count elements or pages and then add the value of the Counter to generated text.

A Counter needs to be defined either with the counter-reset or the counter-increment property. Its
value is read with the counter() function as value of the content property.

A common use-case for Counters are numbered headings. The chapter heading of a document is intended to
display a number in front of its text that increases with each chapter.

Example 73: Chapter heading

A chapter heading for HTML <h1> elements using Counters and Generated Text.

h1 {
 /* increases the counter "heading1" by 1 on each <h1> element */
 counter-increment: heading1 1;
}
h1::before {
 /* Adds the current value of "heading1" before the <h1> element's
 text as decimal number */
 content: counter(heading1, decimal)
}

Subchapter headings, work the same way, with a simple addition. The number of each subchapter is
intended to be reset whenever a new chapter begins. To restart numbering, the counter-reset property is
used.

Example 74: Subchapter headings with Counters reset every chapter

h1 {
 /* resets the value of counter "heading2" to 0 on every <h1> element */
 counter-reset: heading2 0;
}
h2 {
 counter-increment: heading2 1;
}

h2::before {
 /* Shows the current value of "heading1" and "heading2", separated by a
 generated text ".", the value of "heading2" is shown as lower-case
 letter */
 content: counter(heading1, decimal) "." counter(heading2, lower-alpha)
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

122

To define custom counter representations use the @counter-style rule. It is structured like this:

@counter-style <counter-style-name> {

 system: <counter-system>;
 symbols: <counter-symbols>;
 additive-symbols: <additive-symbols>;
 negative: <negative-symbol>;
 prefix: <prefix>;
 suffix: <suffix>;
 range: <range>;
 pad: <padding>;
 fallback: <counter-style-name>;

}

To learn more on how to use the @counter-style rule, see the MDN Documentation.

www.pdfreactor.com

6.3.3 Counters

123

https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style

6.4 Page Header & Footer

6.4.1 Header, Footer & Page Side Boxes

It is possible to add Generated Content to a page within the page margin. The page margin is the space
between the document content and the edges of a sheet. It is defined on a page using Page Selectors
(p. 114) and the margin property.

Each page provides sixteen Page Margin Boxes that can display Generated Content much like a pseudo-
element. To add Generated Content to a page, add a Page Margin Box declaration to an existing @page rule
and set the Generated Content to the content property as usual.

Fig. 3: Page Margin Boxes

A Page Margin Box declaration consists of an "@" character followed by the name of the Page Margin Box.

Example 75: Page Header with Generated Text on the left and right side

@top-left {
 content: "RealObjects PDFreactor(R)";
}
@top-right {
 content: "copyright 2024 by RealObjects";
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

124

6.4.2 Running Elements

Running Elements are elements inside the document that are not rendered inside the document content but
inside Page Margin Boxes.

They are useful whenever the content of a Page Margin Box needs to be more complex than Generated
Content (e.g. a table) or parts of it need to be styled individually.

Note

In case the document does not provide elements to use Running Elements and Generated Content does not suffice, it
is possible to add elements to the document with JavaScript to be able to use Running Elements.

To create a Running Element, an element needs to be positioned as "running", using the running()
function with an identifier for the element as argument. The function is set as value of the position
property. This removes the element from the document content.

To display a Running Element inside a Page Margin Box, set the element() function as value of the
content property. The argument of the function is the same identifier used to in the running() function

of the Running Element.

Example 76: Creating a Page Footer

An HTML <footer> element at the start of the document used as page footer in all pages.

HTML:

<body>
 <footer>...</footer>
 ...
</body>

CSS:

footer {
 position: running(footerIdentifier);
}
@page {
 @bottom-center {
 content: element(footerIdentifier);
 }
}

The <footer> needs to be at the beginning of the HTML document to guarantee, that it will appear on
every page of the document.

The reason for that is, that running elements stay anchored to the location they would appear in if they were
not Running Elements.

The original position of the running element inside the document plays a key role when designing a
document, it provides document designers with additional options.

www.pdfreactor.com

6.4.2 Running Elements

125

First of all it is possible to have running elements of the same name, which makes it possible to change the
content of a Page Margin Box over the course of the document.

Example 77: Multiple Running Elements

Two Running Elements at the start of the document with the same name. The first appears on page one,
the second on every page thereafter because it is the latest Running Element of the name.

HTML:

<body>
 <header id="titlePageHeader">...</header>
 <header id="pageHeader">...</header>
 <!-- first page content -->
 ...
 <!-- second page content -->
 ...
</body>

CSS:

#titlePageHeader, #pageHeader {
 position: running(headerIdentifier);
}
@page {
 @top-center {
 content: element(headerIdentifier);
 }
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

126

Second of all it is possible to have running elements appear for the first time later in the document than on
the first page.

Example 78: Running Elements on later pages

An HTML <footer> element at the end of the document is used as Running Element. The page footer
displays it in the last page only, as it is not available earlier.

HTML:

<body>
 ...
 <footer>...</footer>
</body>

CSS:

footer {
 position: running(footerIdentifier);
}
@page {
 @bottom-center {
 content: element(footerIdentifier);
 }
}

Notice how the style does not differ from the one used in the first example of this chapter. This shows how
much influence the position of a Running Element is inside the document has.

It is possible that more than one Running Element of the same name would anchor on the same page.
Sometimes, it may not be the first Running Element on a page that should be used for that page. For that
case it is possible to add one of these identifiers as second argument to the element() function:

 start

 Retrieves the latest Running Element of the name from previous pages.

 If there is none, nothing is displayed.

 first

 Retrieves the first Running Element of the name on the page.

 If there is none, it falls back to the behavior of start .

 This is the default behavior if no argument is given.

 last

 Retrieves the last Running Element of the name on the page.

 If there is none, it falls back to the behavior of start .

 This keyword is useful in case a Running Element is displayed as footer throughout the document but
the last page should receive a different Running Element, which is placed at the end of the document.

www.pdfreactor.com

6.4.2 Running Elements

127

 first-except

 If a Running Element of the name is on the page, nothing is displayed.

 If there is none, it falls back to the behavior of start .

 This keyword is useful on chapter title pages where the chapter name is already displayed.

Note

If a Running Element or its contents define Generated Content that contains Counters (p. 122) (or Named Strings
(p. 129)) their value will be the same as if they were defined as content of the Page Margin Box the Running Element is
used in.

6.4.3 Running Documents

In case Generated Content (p. 120) does not suffice and Running Elements (p. 125) are not an option, it is
possible to use Running Documents inside Page Margin Boxes.

A Running Document is a String containing an HTML document or document fragment or a URL that
references a document as argument of the xhtml() function.

Note

The xhtml() function is a proprietary extension of CSS and will only work for RealObjects products.

Example 79: Variants of 'xhtml()' function declarations

/* document fragment */
content: xhtml("<table>…</table>");
/* complete document */
content: xhtml("<html><head>...</head><body>...</body></html>");
/* external document */
content: xhtml(url("header.html"));

The document is loaded independently inside the Page Margin Box but styles from the document are passed
down to it. This can be an advantage as the same style is used throughout all documents. In some cases
though this behavior is not desired as this style may break the layout of the document inside the Page Margin
Box. To prevent passing down style the -ro-passdown-styles property is used.

Note

When using the xhtml() function in non-HTML5 documents (e.g. XHTML inside the head in a <style> element) the
entire CSS needs to be wrapped in an XML comment.

<!--
@page {
 @top-center {
 content: xhtml("<table>...</table>");
 }
}
-->

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

128

Note

Running Documents have access to Counters (p. 122) and Named Strings (p. 129) from their embedding document
and may display them, but cannot influence them.

Counters and Named Strings created inside Running Documents have no effect outside of the Running Document.

6.5 Generated Content for Pages

Additional features for Generated Content (p. 120) are available within Page Margin Boxes (p. 124).

6.5.1 Page Counters

To add page numbers to documents, Page Counters are used. Page Counters work like regular counters
(p. 122), but are defined on pages (p. 114) and accessed in page margin boxes (p. 124).

The default Page Counter is named page and automatically defined in HTML documents.

Example 80: A Page Counter used at the bottom right of the page to display the page number

@page {
 @bottom-right {
 content: counter(page);
 }
}

Note

For XML documents you can define the Page Counter as follows.

@page:first {
 counter-reset: page applicationValue("com/realobjects/pdfreactor/start-page-
number");
}

Additionally there is the pages counter, which is always defined as the total number of pages of the laid out
document.

Example 81: Using the page counters

content: "Page " counter(page) " of " counter(pages)

You can add an offset to the pages counter value (e.g. -1 to ignore the cover page) via the @-ro-
preferences (p. 168) property pages-counter-offset .

6.5.2 Named Strings

Named Strings allow to store the text of an element and its Generated Content (p. 120) as String for use in
Page Margin Boxes (p. 124).

www.pdfreactor.com

6.5 Generated Content for Pages

129

A Named String is defined very similar to a Counter (p. 122) and is used in a similar way. To create a Named
String the property string-set is used, which requires an identifier and a definition of the contents of the
String. To read a Named String the string() function is used as value of the content property.

Example 82: Using Named Strings in the header

A Named String headingString created from the heading's text with the function content() and
read with the string() function from the page header:

h1 {
 string-set: headingString content(text);
}
@page {
 @top-left {
 content: string(headingString);
 }
}

The content of a named String is very flexible and can take a combination of Strings, counter() functions
and Named String keywords.

Example 83: Variations of Named String declarations

/* Creates a Named String in the form of "Chapter [chapter number]: [chapter title]".
*/
h1 {
 string-set: headingString "Chapter " content(before) ": " content()
}
/* Retrieves the first letter of an address element, useful as part of a page header
 for a sorted list of addresses */
address {
 string-set: addressEntry content(first-letter);
}

When a Named String is set multiple times on the current page, the optional 2nd parameter of the function,
defaulting to first , specifies which one to use:

 first : the first one

 last : the last one

 first-except : none, use empty string

 start : the first one, if it is at the beginning of the page

If there is none on the current page (or, in case of start , none at its beginning), the last one before is used.
If there is none, either, the default is the empty string.

6.5.3 Cross-references

A Cross-reference is a piece of text that references another location in the document in order to establish a
thematic relationship to that location.

Although it is perfectly possible to add such references by hand, this approach is prone to error when
creating and modifying the document. After a change the numbering and page numbers might not match the
numbering from when the cross-reference was first defined. The same could happen to the reference text if it
includes the chapter title.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

130

To always keep the reference up-to-date with the referenced location, CSS provides the
target-counter() and target-text() functions to retrieve the exact numbering, title or page number

of the referenced location.

Note

PDFreactor only resolves internal links referring to an anchor in the same input document, see the chapter Links
(p. 91) for more information.

Counter Cross-references

The target-counter() function is used inside the content property the same way a counter()
function would be used. It receives a URL to the referenced location and the name of the counter as
identifier. It may receive an optional third argument to define the output style of the counter, just like the
counter() function.

Example 84: Cross-references to numbered headings

Cross-references created from an HTML hyperlink to a chapter heading with a numbering. The Cross-
reference is declared with generated text and target-counter() functions to retrieve the page and
chapter numbers.

HTML:

...
<p>For more information see.
...
<h1 id="chapter">Cross-references</h1>
...

CSS:

@page {
 @bottom-right {
 content: counter(page);
 }
}
h1 {
 counter-increment: chapterCounter;
}
h1::before {
 content: counter(chapterCounter, upper-roman);
}
a[href]::after {
 content: "Chapter " target-counter(attr(href), chapterCounter, upper-roman)
 " on page " target-counter(attr(href), page);
}

Assuming the referenced chapter would render on page 5 as the third chapter, the cross-reference would
read:

For more information, see Chapter III on page 5.

www.pdfreactor.com

6.5.3 Cross-references

131

Text Cross-references

The target-text() function is used inside the content property in a similar way as the
target-counter() function is used. It receives a URL to the referenced location and takes one of these

four keywords to specify the text to retrieve:

 content - Retrieves the textual content of the element. This is the default keyword if no keyword is
present.

 first-letter - Retrieves the first letter of the element's textual content.

 before - Retrieves the before Generated Content (p. 120) of an element.

 after - Retrieves the after Generated Content (p. 120) of an element.

The following example shows a cross-reference that references a heading and shows its before Generated
Content and text:

Example 85: Cross-reference showing its target's content and before content

a[href]{
 content: target-text(attr(href), before) " "
 target-text(attr(href), content);
}

Note

target-text() makes it easy to retrieve the before Generated Content of an element, which may include its
numbering. This method does not require any knowledge about how this before Generated Content is created but it
also does not allow to rebuild it into something different.

If the before Generated Content of an element is "2.1" and the page header should be "Chapter 2, Section 1" the
target-counter() (p. 131) function provides the necessary means to retrieve all the Counters (p. 122) individually.

6.5.4 Footnotes

A footnote is a text note placed on the bottom of a page, a column or a region. It references a specific part of
the main content of the document, giving further explanations or information about a citation. A footnote is
marked by a defined symbol both in the main content of the page and in the footnote area at the bottom, to
show which parts belong together.

For content that is required to have a footnote, the following style can be applied:

float: footnote;

The text content of the element that the style applied to, will appear in the footnote area at the bottom of the
page. The footnote area of pages can be styled via CSS using the footnote at-rule.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

132

Example 86: Defining a footnote for an element and styling the footnote area of the page

HTML (snippet)

<p>This is a CSSCascading Style Sheet generated
footnote.</p>

CSS

.footnote {
 float: footnote;
}
@page {
 @footnote {
 border-top: solid black 1px;
 }
}

The pseudo-element ::-ro-footnote-area allows to select the footnote area of multi-column or region
elements for styling.

Example 87: Styling the footnote area of multi-column element

.multiColumn {
 columns: 2;
}
.multiColumn::-ro-footnote-area {
 border-top: solid black 1px;
}

By defining a footnote, a footnote call is left behind in the main content. Its content and style can be
influenced by the footnote-call pseudo-element.

For every footnote element, there is also a footnote-marker pseudo-element added. Usually this
contains the same number or symbol as the footnote-call it belongs to.

Example 88: Styling the footnote-call and footnote-marker

.footnote::footnote-call {
 content: counter(footnote, decimal);
}
.footnote::footnote-marker {
 content: counter(footnote, decimal);
}

By default, the footnote counter is available and is automatically incremented for every element with the style:

float: footnote

By default, this counter numbers the footnotes sequentially for the entire document. To number footnotes on
a per-page basis, the counter has to be reset on every page, using the following style:

@page {
 counter-reset: footnote;
}

Note

PDFreactor currently does not support nested footnotes.

www.pdfreactor.com

6.5.4 Footnotes

133

Normally, footnotes are laid out as block elements, which means that they are stacked on top of each other.
When having several short footnotes, it can make sense to place them next to each other, as if they were
inline elements. This can be achieved by using the footnote-display property, which can either be set to
block or inline :

.footnote {
 float: footnote;
 footnote-display: inline;
}

6.5.5 Sidenotes

Sidenotes, also known as marginalia, are short notes that are put into the left or right page margin. They are
similar to footnotes in function and usage, but have no influence on the layout.

In contrast to footnotes, a sidenote can be moved to the left or right. As the preferred side may depend on
other factors like whether a page is a left page or the document's text direction (e.g. right-to-left), sidenotes
are created by setting a CSS function with a parameter for the direction on the float property of the element
that should become a sidenote.

As sidenotes are moved to the page margin, that margin should be increased to give them enough space.
This can either be done directly by setting a margin on the page itself, or by setting a width on the sidenote
area itself. The second option will be further explained in the Sidenote Area chapter (p. 136) below.

Example 89: Styling an element as a sidenote and give the page a bigger margin to accommondate it

HTML (snippet)

<p>This is the normal page content.This is the sidenote</
p>

CSS

.sidenote {
 float: -ro-sidenote(right);
}
@page {
 margin-right: 5cm;
}

By default, the sidenotes will be placed at the same height as the content surrounding it. The CSS property
-ro-sidenote-align allows to specify a few other vertical positions that depend on the sidenote's

context. For example, setting it to container-start will align the sidenote with the top of its surrounding
paragraph.

.sidenote {
 float: -ro-sidenote(right);
 -ro-sidenote-align: container-start;
}

Note

PDFreactor currently does not support nested sidenotes or footnotes inside sidenotes.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

134

Modifying Alignment

When sidenotes are too close together, the upper sidenotes will generally push the lower sidenotes down to
avoid overlapping. However, a sidenote can be prioritized so that it tries to prevent overlapping by pushing
previous sidenotes up, thus maintaining its intended position. This can be done for baseline ,
container-start and container-end alignments by appending the keyword strict .

Example 90: Making alignment of a sidenote strict

.sidenote {
 float: -ro-sidenote(right);
 -ro-sidenote-align: baseline strict;
}

Note that a sidenote with strict alignment may still be moved up or down to prevent overlapping if there is not
enough space for all sidenotes.

When aiming for a certain style, it may be useful to offset the position of sidenotes. This can be done for
baseline , container-start and container-end alignment by using the CSS property -ro-

sidenote-offset . It allows to shift a sidenote up or down by a specified length (with negative length
shifting up). Percentage values are resolved with the sidenote's border-box height.

Example 91: Aligning a sidenote to container top and offsetting it down by 5mm

.sidenote {
 float: -ro-sidenote(right);
 -ro-sidenote-align: container-start;
 -ro-sidenote-offset: 5mm;
}

It is possible to define an avoid area via an element in the page content by using the CSS property -ro-
sidenote-avoid . If possible, the placement of sidenotes next to that element is avoided. An additional
parameter allows to specify which box is used to determine the avoided area (e.g. the margin or content box).
This is useful if the element should overflow into the sidenote area in order to use the maximum avaiblable
space on the page. However, sidenotes may still end up overlapping if there is not enough space left.

Calls and Markers

Although it is uncommon, in certain situations it may be useful to have calls and markers, similar to footnotes.
They are not used by default, but pseudo-elements are provided to create them. A call is generated in the
content where the sidenote originates and a marker is placed just before the sidenote content.

www.pdfreactor.com

6.5.5 Sidenotes

135

By creating and using a global counter for sidenotes, it is possible to number them, thus showing exactly
what each sidenote refers to.

Example 92: Defining sidenote calls and markers and using a sidenote counter

HTML (snippet)

<p>This is the normal page content.This is the sidenote</
p>

CSS

:root {
 /* Declare the sidenote counter for the whole document */
 counter-reset: sidenote;
}
.sidenote {
 float: -ro-sidenote(right);
 counter-increment: sidenote;
}
.sidenote::-ro-sidenote-call {
 content: "[" counter(sidenote) "]";
}
.sidenote::-ro-sidenote-marker {
 content: counter(sidenote) ")";
}
@page {
 margin-right: 5cm;
}

Note that the numbering of the sidenotes is in DOM order, so depending on the layout (e.g. multi-column) or
the vertical alignment, they are not necessarily sorted by that numbering when appearing in the sidenote
area.

The Sidenote Area

The sidenote area is the container in which the sidenotes are positioned. Each page can have a left and a
right one. Styles can be applied to sidenote areas by selecting them via the at-rule @-ro-sidenote inside
a page-rule, similar to how page margin boxes are selected. However, using this at-rule alone will select both
sidenote areas. To select only one area, a pseudo-class has to be appended:

Pseudo Classes for Selecting Only One Sidenote Area

Psuedo
Class

Description

:left Selects the sidenote area that is visually on the left or right.

:right

:verso Selects a different sidenote area depending on the text direction of the document. Verso is left in left-
to-right documents and right in right-to-left documents. Recto is right in left-to-right documents and
left in right-to-left documents.:recto

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

136

Psuedo
Class

Description

:inside Selects a different sidenote area depending on the side of the page, which is useful when having
different styles for left and right pages. Inside is right for left pages and left for right pages. Outside is
left for left pages and right for right pages.:outside

Note that the styles set on the sidenote area are not inherited to the sidenotes themselves. They still inherit
from their parent elements in the DOM. Making the sidenote styles completely independent from the styles of
the rest of the document can be achieved by applying all:initial :

Example 93: Resetting all styles on a sidenote

.sidenote {
 /* Prevent style inheritance */
 all: initial;
 float: -ro-sidenote(outside);
}

Sizing the Sidenote Area

When setting the size of a sidenote area, there are several special behaviors that have to be taken into
account. Firstly, some properties cannot be applied. The height of the area is always determined via the
height of the page content. And as its width is fixed and will not be changed by its content, the minimum and
maximum size properties are ignored.

Secondly, the width property is handled a bit differently. A width of auto is resolved to a sidenote area with
an outer width that is exactly as wide as the page margin of the respective side. This means that the width
that is available to the page content remains unchanged.

Percentage widths are relative to that page margin width defined by its page rule:

Example 94: Percentage width of a sidenote area

@page {
 margin-right: 2cm;
 @-ro-sidenote:right {
 /* Make area content twice as wide as margin-right of the page (4cm). */
 width: 200%;
 /* Add the right margin of the page to the area (2cm). */
 margin-right: 100%;
 }
}

If a sidenote area is larger than the respective page margin, the page content width is reduced by that
difference, as if the page margin was increased. However, the page margin boxes themselves remain
unchanged and still use the margin widths that have been defined in their respective page rule.

Note that when specifying both areas on the same page, then neither of them may occupy more than half of
the page width or else they may overlap with the page content.

Continued

www.pdfreactor.com

6.5.5 Sidenotes

137

Logical Properties on the Sidenote Area

When defining a sidenote area that should always be on the outside of a page, their margin or border styles
also have to depend on the page side. This can be achieved by defining different @-ro-sidenote rules for
each page side:

Example 95: Defining page side specific sidenote areas

@page {
 margin: 2cm;
 /* Styles that are the same for both page sides */
 @-ro-sidenote:outside {
 width: 3cm;
 background-color: #eee;
 }
}
@page:left {
 @-ro-sidenote:left {
 border-right: 1mm solid grey;
 margin-left: 2cm;
 }
}
@page:right {
 @-ro-sidenote:right {
 border-left: 1mm solid grey;
 margin-right: 2cm;
 }
}

The styles above create sidenote areas on the outside of all pages, with a margin to the page edge and a
border towards the page content. However, the same can be achieved far easier by the special behavior of
logical properties on sidenote areas.

Under normal circumstances logical properties are mapped to their physical counterparts depending on the
text direction. However, logical properties set on sidenote areas are resolved depending on whether the area
is on the left or the right side of a page. The "inline start" properties are resolved to the outside side (i.e. right
on right pages and left and left pages) and "end" properties are resolved to the inside side (i.e. left on right
pages and right on left pages). Imagine the area growing from the page edge towards the page content.

Example 96: Setting logical properties on a sidenote area

@page {
 margin: 2cm;
 @-ro-sidenote:outside {
 width: 3cm;
 background-color: #eee;
 border-inline-end: 1mm solid grey;
 margin-inline-start: 2cm;
 }
}

6.5.6 Continuation Markers

When content is fragmented it can be helpful to show a hint that it is continued on the next page or a
fragment is a continuation from a previous one. PDFreactor allows to specify such continuation markers.

The markers are generated content and as such they are addressed with proprietary pseudo-elements. The
pseudo-element ::-ro-before-break creates markers at the bottom or before a break (e.g. "Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

138

on next page"), while ::-ro-after-break creates markers at the top or after the break. These
continuation markers are only created if there is a next or previous fragment, i.e. the respective element is
split.

In the current implementation, the continuation markers can only be applied on block elements
(display: block). This means that when intending to apply them on a table, they must be used on a
container element that wraps the table:

Example 97: Continuation Markers for Tables

HTML:

<div class="table">
 <table> ... </table>
</div>

CSS:

div.table::-ro-before-break {
 content: "Continued on page " -ro-counter-offset(page, 1);
 text-align: center;
 font-weight: bold;
}
div.table::-ro-after-break {
 content: "Continuation from page " -ro-counter-offset(page, -1);
 text-align: center;
 font-weight: bold;
}

Note

In order to hint to the next page number, the proprietary function -ro-counter-offset is used in this sample to
modify the current page number by one.

6.6 Transforms

PDFreactor is capable of applying two dimensional transformations on elements with the transform

property, which makes moving, rotating and scaling document content possible.

Note

Transforms do not have an impact on the document layout, e.g. content with scaled up size will not push other content
away to prevent overlapping.

6.6.1 Reduce Table Width with Rotated Table Headers

awesomizr.js (p. 89) is able to reduce the width of table headers with transforms.

The rotateTableHeaders() function transforms and rotates a table header, in order to reduce its width.
If there is no table header, the first line is converted to one.

www.pdfreactor.com

6.6 Transforms

139

This function takes two parameters:

 table : The HTML node of the table

 params : An object of optional parameters

Options

Key Description Default

angle The angle in degrees at which the header will be rotated. Should be between -90 and 90 45

width The width that the header cells should have after the transformation, e.g. "20pt". "auto"

firstCol Whether to prevent the first column from being transformed. false

lastCol Whether to prevent the last column from being transformed. false

footer Whether to create a <tfoot> element from the last row in the table. Has no effect if the
table already contains a <tfoot> .

false

6.7 Multi-column Layout

The content of a document can be arranged in columns with elements like images or titles spanning through
all columns if desired. Elements are laid out in a way similar to pages, text and boxes will break whenever no
space is left in a column.

Multi-column layout is often used in print products like newspapers or magazines, it is intended to reduce the
line width to make text easier to read.

The following box shows how text flows in a three-column layout. The paragraphs are numbered to better
visualize the effect of multi-column layout.

[1] Lorem ipsum dolor sit amet,
consectetur adipiscing elit. Nulla
in libero turpis. Sed sed dolor
diam, eu dapibus quam.
Quisque ut nulla purus, iaculis
sollicitudin erat. Nullam dictum
suscipit porttitor.

[2] Aliquam aliquam elementum
elementum. Donec vel odio nec
diam ullamcorper ultricies vel sit
amet elit. Cras non aliquet
lectus.

[3] Donec sollicitudin lorem
placerat est condimentum
rutrum. Fusce tempor cursus
rutrum. Duis mattis mattis
sapien. Phasellus tempus
iaculis tellus sed vestibulum.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

140

[4] Etiam faucibus consectetur
augue, sit amet interdum elit
dapibus at.

To create a multi-column layout inside an element add either the property column-count or
column-width or both. By adding them the element becomes a multi-column element.

The column-count property defines the number of columns inside the element. Any number greater than 1
will create a multi-column layout. The column-count property is especially useful if the actual width of the
columns is not as important as the number of columns.

Alternatively, the column-width property can be used to specify a minimum width for the columns. Based
on this width the final column count is computed, thus the resulting column widths are likely larger than the
specified value.

/* define two columns */
div.twoColumns { column-count: 2; }

/* define columns with a width of 2in */
div.twoInchColumns { column-width: 2in; }

By default, PDFreactor aims to balance the content of columns so that the content of all individual columns is
equally long, if possible. This has the effect of keeping the height of each column at the possible minimum,
which automatically determines the height of the multi-column element as a whole if it wasn't defined by a
height property or attribute.

This behavior can also be modified to fill columns sequentially. In this case, the columns are filled until no
more space is available in one column and the rest of the content needs to be moved to the next column.
With this behavior a multi-column element whose height is not restricted will take up all the remaining space
inside the multi-column-element, up to the remaining space available on the page until it breaks to another
column.

The filling behavior can be controlled with the column-fill property:

/* sequential filling behavior */
div.sequentialFill { column-fill: auto; }

/* balanced filling behavior */
div.balancedFill { column-fill: balance; }

A defined height on the multi-column element will be used for an element, regardless of the filling behavior. If
there is less content than there is space inside the multi-column element a balanced filling behavior will
create shorter columns, leaving space at the bottom of the multi-column element. Sequential filling behavior
may not have enough content to fill all the columns, thus columns may be left empty. If there is more content
than there is space inside the multi-column element, the multi-column element will create a page break and
continue on the next page, at the first column.

www.pdfreactor.com

6.7 Multi-column Layout

141

Usually elements inside a multi-column element are laid out one after another in columns as defined by the
filling behavior. Some elements, however, may require a certain behavior when inside columns.

There are elements that are required to span all columns inside the multi-column element instead of only one.
Headings, pictures or tables are the most common examples. To have an element span all columns the
column-span property is used.

/* a heading that spans all columns */
h1 { column-span: all; }

/* a table in a single column */
table { column-span: none; }

To add some visual appeal to the multi-column element borders, backgrounds and padding can be used.
Beside these standard styles multi-column elements can also receive additional styles for the space between
columns.

To visually separate columns it is possible to define the gap width. Gaps can be considered as padding
between columns. To define the gap width for a multi-column element the column-gap property is used.

/* a gap of 0.25in */
div.multiColumn { column-gap: 0.25in; }

In addition to the gap a rule can be added between the columns as additional visual aid for separating
columns. To define rules for a multi-column element the property either the column-rule shorthand or the
individual properties column-rule-width , column-rule-style or column-rule-color can be
used.

/* a solid black rule with 0.1in width*/
div.multiColumn {
 column-rule-width: 0.1in;
 column-rule-style: solid;
 column-rule-color: black;
}

/* the same definition as shorthand */
div.multiColumn { column-rule: 0.1in solid black; }

Note

A Multi-column layout with justified text looks best when the text is laid out with Automatic Hyphenation (p. 118)
enabled.

6.8 Line Grids and Snapping

With CSS it is possible to align lines of text to invisible grids in the document. This greatly improves
readability of duplex printing or for documents with multi-column layouts. Lines remain at the same position
on every page, thus keeping a vertical rhythm which is very beneficial to the reading experience.

The below images show how snapping to the line grid works and how it improves readability in a text with two
columns (the line grid is visualized by the dotted lines).

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

142

Fig. 4: Lines not snapped Fig. 5: Lines snapped to grid

Snapping to grid can be enabled by using the CSS property -ro-line-snap . In addition to snapping to the
baseline of the grid, it is also possible snap line boxes to the center of two of the grid's lines. The latter may
be beneficial for text that contains small and large font sizes because the space in the grid is used more
efficiently.

/* snapping to baseline */
p {
 -ro-line-snap: baseline;
}

/* snapping between grid lines */
p {
 -ro-line-snap: contain;
}

Line grids are created automatically. Normally, one line grid is created for the root element on each page and
is then used by all its block-level descendants. It is also possible to create a new line grid for a block using its
own font and line height settings. This is very useful for multi-column containers as it might be undesirable
for such a container to use its parent's grid. A new grid can be created with the following style declaration,
using the CSS property -ro-line-grid :

div {
 -ro-line-grid: create;
}

www.pdfreactor.com

6.8 Line Grids and Snapping

143

Note

When using Page Floats (p. 148) and line grids, make sure that top floated elements are also set to snap to the grid,
otherwise they may push the text below them downwards, so that the lines are no longer aligned with the grid.

Also avoid mixing different line grid settings with page floats, as on each page only the last page float that snaps to a
grid can be taken into account, so using different line grids may also lead to misaligned text.

Applying styles to an element that change its formatting context, like overflow with a value other than visible ,
may change the position of the grid's baselines.

6.9 Region Layout

Regions are containers for document content similar to pages or columns (p. 140), but they can be positioned
individually. In contrast to automatically created pages and columns, regions are based on block elements
from the document, which presents them with more styling options.

Regions belong to a region chain, that connects them and tells how their contents flows from one to another.
The content of a region chain is called the named flow and elements can be added to a named flow to be
displayed in regions.

Fig. 6: A named flow flows through a region chain.

6.9.1 Adding Regions to Region Chains

Most block elements can be defined as a region. They are not required to be of the same size nor are they
required to be the same node name.

To create a region from a block element, the -ro-flow-from property is used. It receives an identifier. A
region chain contains all regions of the same identifier in document order. The identifier is also the name of
the named flow these regions will display.

Note

A region element will not have its subtree rendered. It either displays content from a named flow or nothing.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

144

Example 98: Region Chain

A chain of two regions defined for two HTML div elements with IDs region1 and region2 .

#region1, #region2 {
 -ro-flow-from: regionChainName;
}

PDFreactor lays out content into regions and breaks text and boxes where no space is left. The number of
regions inside a region chain is limited by the number of associated Region elements though and it is
possible that the content of a named flow occupies more space than is available inside the regions of a
region chain. In that case content from the named flow overflows the last region inside the region chain.

Note

A region does not influence the style of the content it contains. No style is inherited from a region into the displayed
named flow and style that would influence the content of an element has no effect on a region's content.

6.9.2 Adding Content to a Named Flow

The -ro-flow-into property adds document content to a named flow. The content may consist of content
from one or more elements. Content assigned to a named flow is not rendered at its position inside the
document but inside one of the regions inside the region chain.

The property receives an identifier which is the name of the named flow the content belongs to. An optional
keyword defines what part of the styled element should be taken into the named flow:

 element

 Adds the entire element to the named flow.

 If no keyword is given, this is the default behavior.

 content

 Adds the element's content to the named flow.

www.pdfreactor.com

6.9.2 Adding Content to a Named Flow

145

Example 99: Named Flow

Creation of a named flow for two HTML <article> elements while an HTML <section> element from
one of the articles is moved to a different named flow.

HTML:

<article>...</article>
<article>
 ...
 <section id="info">...</section>
</article>

CSS:

article {
 -ro-flow-into: articleNamedFlowName;
}
section#info {
 -ro-flow-into: infoNamedFlowName;
}

Note

The content of a named flow may be rendered inside regions, but it still inherits style and computes its style the same
way it would as if it did not appear inside a region.

6.9.3 Region Generated Content

A region element can have before and after Generated Content (p. 120) just like any other element. This
generated content is rendered above or below the region's content and is not moved to the next region due to
lack of space. Instead the available space inside a region is reduced. If there is not enough space left, the
region's content flows over.

6.10 Controlling Breaks

Although PDFreactor performs automatic breaks between boxes for pages (p. 113), columns (p. 140) and
regions (p. 144), it is often necessary to add explicit breaks in certain situations or breaks should be avoided
to keep content together where it belongs together. This chapter explains how both can be achieved.

Note

PDFreactor provides styles for HTML that influence the break behavior for certain elements like headings. Break Styles
for XML documents need to be created based on the document language.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

146

6.10.1 Breaking Around Boxes

To manipulate the break behavior before and after boxes, the break-before and break-after

properties are used. They provide keywords to force or avoid page, column and region breaks.

Example 100: Start a chapter on a new page

A manual page break before an HTML <h1> element, used to make a chapter start on top of a new page.

h1 {
 break-before: page;
}

Example 101: Start a chapter on a new right page

A manual page break before an HTML <h1> element, that makes the chapter start on a right page.

h1 {
 break-before: right;
}

This style creates a page break before the h1 and moves it to the next page. In case this is a left page
another page break is performed, to move it to a right page again.

Example 102: Avoiding breaks after HTML heading elements

h1, h2, h3, h4, h5, h6 {
 break-after: avoid;
}

Note

PDFreactor also supports the CSS 2.1 properties page-break-before and page-break-after . They are
resolved as shorthands for break-before and break-after .

6.10.2 Avoid Breaking Inside Boxes

To manipulate the break behavior inside a box, the property break-inside is used. It specifies whether
breaking should be avoided inside the box or not.

Example 103: Avoiding breaks

Avoid breaks inside an HTML <div> element.

div {
 break-inside: avoid;
}

Note

PDFreactor also accepts the CSS 2.1 property page-break-inside and resolves it as shorthand for
break-inside .

www.pdfreactor.com

6.10.1 Breaking Around Boxes

147

6.10.3 Adaptive Page Breaks

awesomizr.js (p. 89) is able to automatically add page breaks depending on the amount of space left below
an element with the help of the applyAdaptivePageBreaks() function.

A possible use case is to prevent a new section from beginning at the bottom of a page.

The function also prevents large whitespaces that occur when in situations where only a couple of sentences
from a previous section are followed by a page break as the next section begins.

The function takes two parameters:

 selector : (optional) The CSS selector for the elements that may require a new page break. Default
value: "h1, h2"

 threshold : (optional) If an element is below this percentage of the page height, a page break is
inserted. Default value: 67

6.11 Page Floats

Page floats are an extension of regular floats, also called inline floats, as they float in inline direction, i.e. left
and right. Page floats on the other hand allow to float up and down, to the top or the bottom of a
fragmentation container (page, column or region). If there is not enough space left, the page float is moved to
the next fragmentation container, e.g. to the top/bottom of the following page, while the rest of the content
continues on the current page.

The current implementation of page floats does come with some limitations:

 The normal content does not flow to the sides of the page float. Basically, the page float area always
consumes the complete width of the corresponding fragmentation container, even if a page float itself has
a smaller width.

 The page float always flows in the current fragmentation container. For example, a page float originating
in a multi-column, will always stay in a column and is not moved to the level of the page.

 The content of a page float cannot be fragmented, meaning that if it becomes larger than a page, it will
overflow instead of being split to the next page.

The CSS property float has been extended with the values -ro-top and -ro-bottom to enable page floats.
To set the distance between two page floats of the same side or to the corresponding edge of the page, the
new property -ro-float-offset can be used.

Example 104: Specifying a Page Float

With this sample, elements with the class pageFloatTop float to the top of their page with a gap of 5
mm to the page margin areas at the top.

CSS:

.pageFloatTop {
 float: -ro-top;
 -ro-float-offset: 5mm;
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

148

Note

When inline floats (left or right floated) precede the page float, the inline float may overflow the page. The same may
happen in wrapped column flex items. Basically, when blocks of content are next to each other, problems can arise
when the page float does not originate from the first one. This is a known issue that will be addressed in a future
version.

6.12 Print Specific Page Properties

PDFreactor provides additional means for professional printing that allow to specify oversized pages, a bleed
area and marks for cutting sheets to the final page size and color proofing.

6.12.1 PDF Page Boxes

Page boxes are used to specify the page geometry, especially in professional printing. PDFreactor supports
the TrimBox, MediaBox, BleedBox, CropBox and ArtBox.

TrimBox

The TrimBox defines the size of the final print result, the final page. It contains the page content.

The size of the TrimBox is defined equivalent to the page size, as mentioned in chapter Page Size &
Orientation (p. 115), using the size property.

Example 105: Specifying a TrimBox

The value of the size property also automatically specifies the TrimBox.

size: A4 portrait;

MediaBox

In prepress, a printed document can contain more information than just the actual content in the TrimBox
(e.g. bleed or Printer Marks (p. 151)).

As this information does not belong to the print result and instead needs to be printed around it, a print sheet
larger than the print result is needed. The MediaBox defines the size of the print sheet.

Special oversize formats are used as print sheet in such cases. For DIN 22 standard-based formats, the
matching oversize formats to the A series are the DIN-RA and DIN-SRA formats. An overview of all supported
page sizes can be found in the Appendix Supported Page Size Formats (p. 247)

The property -ro-media-size is used to specify the media size.

Example 106: Specifying a MediaBox

The document should be printed in DIN-SRA4 and the MediaBox is set to this size

-ro-media-size: SRA4;

22 Deutsches Institut für Normung, in English: German Institute for Standardization, Germany's ISO member body.

www.pdfreactor.com

6.12 Print Specific Page Properties

149

The MediaBox is the largest of all 5 page boxes and contains all others which can be smaller or equal than
this box.

BleedBox

The BleedBox contains the TrimBox and is slightly larger. Content from the TrimBox may "bleed" into the
BleedBox where it is still painted.

This is necessary for content that should reach to the edge of the print result. It prevents having unprinted
areas due to unprecise trimming of the printed sheet.

The size of the BleedBox is defined as a width that adds to the TrimBox' size on all four sides. Common
bleed values are 3-5 mm or 1/8 inch.

Setting the bleed size can be achieved by using the property bleed .

Example 107: Specifying a BleedBox

A bleed width of 3mm around the print result. The Bleed Box determines it's size from the TrimBox and
this width.

bleed: 3mm;

Note

By default, any content is cut off at the end of the bleed box. If you need content to overflow into the media box, you
can use the -ro-page-clip CSS property to adjust this behavior.

CropBox

The CropBox defines the complete area of the document that should be displayed on screen or printed out.

The crop size can be defined using the property -ro-crop-size .

The crop size can be set to a specific page size format (like setting the trim size) or to one of the page boxes.
It is set to none by default.

Example 108: Specifying a CropBox

The CropBox is set to match the MediaBox.

-ro-crop-size: media;

ArtBox

The ArtBox is used to define a specific area inside which the page's content is located.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

150

Using the property -ro-art-size , the ArtBox can be set to a specific page size or one of the page boxes.
It is set to none by default.

Note

When generating a PDF/A conformant file (see PDF/A conformance (p. 96)), the ArtBox must not to be defined, so the
property must be set to none .

6.12.2 Printer Marks

Printer Marks are special pieces of information located outside of the actual print result. They are used to
prove the correctness of the result in prepress printing and are placed outside the TrimBox (p. 149).

Cutting out the print result of the print sheet is done inside the bleed area. Trim and bleed marks indicate
where this area starts and ends. Both types of marks are displayed as hairlines in the corner of the print
sheet.

Registration marks show whether the printer's colors are aligned properly. They are printed as crosshair-
shaped objects located on each side of the print sheet.

Color bars show if the colors of the print result meet the expected result. They consist of a variety of colors
that can be checked individually.

Fig. 7: Printer Marks

The property marks is used to add crop, bleed and cross marks. The property -ro-marks-width sets the
width of the mark lines, -ro-marks-color sets their color. The properties -ro-crop-mark-offset ,
-ro-registration-mark-offset and -ro-colorbar-offset set the offset of the corresponding

marks relative to the trim box. The property -ro-bleed-mark-offset sets the offset of bleed marks
relative to the bleed box. The properties -ro-crop-mark-length and -ro-bleed-mark-length set

www.pdfreactor.com

6.12.2 Printer Marks

151

the length of the corresponding marks and -ro-registration-mark-size sets the size of registration
marks.

Example 109: Setting printer marks

marks: crop -ro-bleed cross;
-ro-marks-width: 1pt;
-ro-marks-color: red;

Setting one of the -ro-colorbar-* properties defines where a color bar is added to the document.

Example 110: Setting color bars at the bottom left and right

-ro-colorbar-bottom-left: gradient-tint;
-ro-colorbar-bottom-right: progressive-color;

6.13 Positioning Content Relative to Page Boxes

Using the proprietary property -ro-position-origin allows content with position: absolute to be
positioned relative to any page box (p. 149) of its page. This is especially useful to place decorative content
relative to the bleed box, thus making it exceed the trim box so bleed is properly utilized.

Example 111: Positioning Decorative Page Margin Boxes in Corners of Bleed Boxes of Pages

@page {
 bleed: 3mm;
 -ro-media-size: SRA4 portrait;
 -ro-crop-size: media;
 marks: trim bleed registration;
 @top-right-corner {
 content: counter(page);
 vertical-align: top;
 text-align: right;
 padding: 1cm;
 position: absolute;
 top: 0;
 right: 0;
 width: 5cm;
 height: 5cm;
 background-image: radial-gradient(at 100% 0%, lightblue 0%, white 50%);
 -ro-position-origin: -ro-bleed-box; /* Position in the bleed box of the page */
 }
}

6.14 Leaders

Leaders are often used to draw a visual connection between an entry in a table of contents or similar
structures, and a corresponding value.

In CSS, drawing leaders is accomplished via the use of the leader() function. This function accepts the
following values:

 dotted

 solid

 space

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

152

 <string>

A leader may be added using the content property, and can be combined freely with other generated content
such as counters.

Example 112: Adding leaders to the entries in a table of contents

a.toc_ah2::after {
 content: leader(dotted) " " target-counter(attr(href), page);
}

This may result in a display such as:

6.15 Table of Contents

A table of contents can be inserted into a document to generate a list of the chapters or other important
sections in the document.

This feature is usually used together with cross-references to add links to a table of contents. With the
addition of counters, it can be complemented with the page numbers of the linked chapters.

The createTableOfContents() function provided by awesomizr.js (p. 89) allows to insert a table of
contents that is generated from given elements.

Note

The table of contents requires certain styles to work properly. These styles are included in the awesomizr.css and
should be added either to the document or by using the userStyleSheets configuration property of the PDFreactor
API.

The table of contents is inserted as an HTML div element with the class ro-toc . Inside this div can be
two headings (document title and a heading for the table of contents with the class ro-toc-heading) and
the div elements with links to the pages and a class depending on the level of the referenced element
(ro-toc-heading1 , ro-toc-heading2 , ...)

The level of a TOC entry is determined by the position of its selector in the elements array.

Awesomizr.createTableOfContents({elements: ["h1", "h2", "h3"]});

The function's optional parameter is an object with several options:

www.pdfreactor.com

6.15 Table of Contents

153

Values of the option object

Key Type Description Default

insertiontarget string CSS selector string of the element where the
table of contents should be inserted.

"body"

insertiontype string Specifies where exactly the table of contents
should be inserted:

 "beforebegin" : Before the element

 "afterbegin" : As new first-child

 "beforeend" : As new last-child

 "afterend" : After the element

"afterbegin"

elements array An array of the CSS selector strings of
elements that should be added to the table of
contents. Each TOC entry gets a class name
based on the index of the corresponding
selector in this array, e.g. by default the h2
entries have the class ro-toc-level-2.

["h1", "h2"]

toctitle string The title of the table of contents. If an empty
string is set, no title is inserted.

"Table of Contents"

disabledocumenttitle boolean Whether the document title should NOT be
inserted before the table of contents.

false

text function By default, the text for the entries of the TOC
is the text content of the element matching the
specified selector. Alternatively, you can
specify a function, the return value of which
will be used as text for the respective entry.
The element representing the entry is passed
as an argument to the function. Returning
false will skip the entry entirely and not
include it in the TOC.

null

Example 113: Creating TOC with Awesomizr

Simple table of contents created with Awesomizr based on HTML <h2> elements.

<link href="css/awesomizr.css" type="text/css" rel="stylesheet" />
<script type="module">
 import * as Awesomizr from "./awesomizr.js";

 Awesomizr.createTableOfContents({elements:['h2']});
</script>
...

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

154

Example 114: List of figures with custom text content for the entries

Awesomizr.createTableOfContents({
 elements: ['img'],
 text: function(elem) {
 // the entry text should be the image's alt text
 let txt = elem.alt;

 if (txt) {
 return txt;
 }

 // skip images without alt text
 return false;
 }
});

Note

Alternatively, a table of contents can also be created by using XSLT. Both approaches are demonstrated by the two
versions of the "Children's Novel" sample. You can find them in the "PDFreactor/samples/novel" directory.

6.16 Shrink-to-Fit

For some documents parts of the content are too wide to fit the pages. In most cases this is caused by HTML
documents containing fixed widths intended for screens, e.g. 1024px for the main container element.

While the best solution is adding a print style sheet to override the critical styles with relative widths, such
content can also be shrunk automatically without changing the source document or adding specific styles.

There are two different shrink-to-fit functionalities available in PDFreactor, pixelsPerInchShrinkToFit
and -ro-scale-content . These are non-exclusive and are applied in the aforementioned order.

Note

Shrink-to-fit is only recommended when you need to force content into the boundaries of pages. For high-fidelity print
output, these modes should not be used.

6.16.1 Scaling Pixel Lengths

This configuration property adapts the "pixels per inch" value used for laying out the document, i.e. it only
scales lengths set as px including such set via HTML attributes.

Example 115: Shrink-to-fit using the pixelsPerInchShrinkToFit property

The pixels per inch (p. 161) can also be specified manually.

config.setPixelsPerInchShrinkToFit(true);
All languages (p. 518)

www.pdfreactor.com

6.16 Shrink-to-Fit

155

6.16.2 Scaling Down Page Content

This property must be part of the @page rule affecting the first page:

Example 116: Shrink-to-fit using the -ro-scale-content CSS property

@page {
 -ro-scale-content: auto;
}

For further details see -ro-scale-content .

Note

Page content scaling, if used, always applies to all pages equally. It cannot be applied to only a subset pages or page
groups.

6.16.3 Scaling Down Text

The proprietary value -ro-scale-down of the CSS property text-overflow allows visually scaling
down paragraphs that overflow at the end of lines to automatically make their text fit their width.

Contrary to normal text overflow styles, -ro-scale-down also works with multi-line text. It then applies the
scaling to all lines, so that the whole text content is scaled down equally. However, only overflow in inline (i.e.
horizontal) direction is taken into account to determine whether scaling needs to be applied, not overflow in
block (i.e. vertical) direction.

This feature is especially useful if you want to force text whose length you can't control into a pre-defined
container, such as forcing user-supplied text into an existing form field.

Vertical Position

You can control the vertical position of the scaling effect with the CSS property align-content and its
usual values: start , end , center , baseline (default) and stretch .

The value stretch won't scale down the text vertically, instead the text is skewed to keep its original
height.

Example 117: Scale down a single line of text horizontally

.scaleDown {
 /* Enable text scale down */
 text-overflow: -ro-scale-down;
 /* Make sure we only have a single line */
 white-space: nowrap;
 /* Don't scale vertically */
 align-content: stretch;
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

156

6.16.4 Fit Wide Tables

In cases where an HTML document contains tables that are very wide, usual shrinking strategies may not be
appropriate since the table might have to be scaled down so much that it becomes illegible. In these cases
you could use awesomizr.js (p. 89) to convert the table into a compact version that displays the table
columns as rows. The compactifyTable() function takes the following one or two arguments and
automatically converts a wide table into a narrow variant.

 table — The HTML node of the table.

 params — An optional object of parameters. Refer to the Awesomizr API documentation for more
information.

This conversion only works on uniform tables without any column or row spans.

6.17 Page Order

Usually, the page order of a PDF is only determined by its input document. However, using the configuration
property pageOrder , the page order can be set by providing a string parameter.

For ease of use the following constants are available for the most common cases of page orders:

 REVERSE — The page order is reversed.

 EVEN — All even pages are moved before all odd pages.

 ODD — All odd pages are moved before all even pages.

 BOOKLET — All pages are ordered as in a booklet. To be used with
PagesPerSheetDirection.RIGHT_DOWN .

 BOOKLET_RTL — All pages are in right-to-left booklet order. To be used with
PagesPerSheetDirection.RIGHT_DOWN .

Instead of using a predefined order the parameter can also provide a custom order as comma-separated list
of page numbers and ranges:

 "x,y,z" — New page order x, y, z.

 "x..y" — All consecutive pages from x to y.

 "x*n" — The page x is repeated n times.

 "-x" — Negative page numbers count backwards beginning from the last page and can be used in
combination with all of the above.

 "A" — All pages of the document. Same result as "1..-1".

Example 118: Setting the page order

config.setPageOrder("2,5,6*2,8..10,-1,-2");
All languages (p. 518)

www.pdfreactor.com

6.16.4 Fit Wide Tables

157

The page order shown above results in a PDF having the following page numbers from the original
document, assuming it has 20 pages total: 2, 5, 6, 6, 8, 9, 10, 20, 19.

 "2" — Page 2.

 "5" — Page 5.

 "6*2" — Page 6 two times.

 "8..10" — Pages 8 to 10.

 "-1" — The last page, here page 20.

 "-2" — The second to last page, here page 19.

Note

On the Python command line instead of --pageOrder "-1..1" we recommend using --pageOrder="-1..1" to
specify the page order.

6.17.1 Merge Mode Arrange

The syntax of page order is extended when setting the merge mode to MERGE_MODE_ARRANGE .

As usual, when the merge mode is selected PDFreactor requires one or more merge PDFs to be set (see
Merging PDFs (p. 104)).

The merge documents specified with the array are numbered, beginning with one for the first PDF (when
specifying a single document, it is also addressed with "1").

To select pages from a merge document, first use its number followed by a colon, which then is followed by
the page order syntax described above. Note that the converted document can be addressed using 0: ,
however, this is not necessary, as it is used by default if no document is specified.

Example 119: Inserting existing PDFs into converted document

The order shown above would be:

 "1" — Page 1 from the converted PDF.

 "1:1" — Page 1 from insert1.pdf.

 "2:A" — All Pages from insert2.pdf.

 "2..-1" — Pages 2 to the last page from the converted PDF.

 "1:2" — Page 2 from insert1.pdf.

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/insert1.pdf"),
 new Resource().setUri("https://www.myserver.com/insert2.pdf"))
 .setMode(MergeMode.ARRANGE);
config.setMergeSettings(mergeSettings);
config.setPageOrder("1,1:1,2..-1");

All languages (p. 519)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

158

6.18 Pages Per Sheet

Instead of containing only one page of the input document per PDF page, multiple pages of the input
document can be displayed on one sheet.

The pages will be arranged in a grid on the sheet. The number of columns and rows of this grid are user-
defined.

To utilize Pages Per Sheet use the configuration property pagesPerSheetProperties .

The properties rows and cols define the corresponding number of pages that get laid out on a single
page. Their values are required. The values for sheetSize , sheetMargin and spacing can be set as
CSS width values. direction defines in which way the single pages are ordered.

There are the following options to set a direction:

 PagesPerSheetDirection.RIGHT_DOWN — The single pages are ordered from left to right and top to
bottom. This is the default value.

 PagesPerSheetDirection.RIGHT_UP — The single pages are ordered from left to right and bottom
to top.

 PagesPerSheetDirection.LEFT_DOWN — The single pages are ordered from right to left and top to
bottom.

 PagesPerSheetDirection.LEFT_UP — The single pages are ordered from right to left and bottom to
top.

 PagesPerSheetDirection.UP_RIGHT — The single pages are ordered from bottom to top and left to
right.

 PagesPerSheetDirection.UP_LEFT — The single pages are ordered from bottom to top and right to
left.

 PagesPerSheetDirection.DOWN_RIGHT — The single pages are ordered from top to bottom and left
to right.

 PagesPerSheetDirection.DOWN_LEFT — The single pages are ordered from top to bottom and right
to left.

Example 120: Arranging 4 pages per sheet

Note

Disabled Features. Bookmarks (p. 90), comments (p. 172), links (p. 91), and tags (p. 95) will be automatically disabled
when using pages-per-sheet mode.

config.setPagesPerSheetProperties(new PagesPerSheetProperties()
 .setCols(2)
 .setRows(2)
 .setSheetSize("A4 landscape")
 .setSheetMargin("2.5cm")
 .setSpacing("2cm")
 .setDirection(PagesPerSheetDirection.RIGHT_UP));

All languages (p. 520)

www.pdfreactor.com

6.18 Pages Per Sheet

159

6.19 Booklet

A Booklet is a set of folded pages meant to be read like a book. PDFreactor supports creating Booklets by
combining the Pages Per Sheet (p. 159) functionality with the Page Order (p. 157) feature.

It orders the pages in booklet or rtl booklet page order and places two of these pages on each sheet, rotated
by 90 degrees and side-to-side.

A configuration property allows to configure the page size and margins of the container page as well as to
use the default booklet page order or a reversed order:

6.20 Filling in Pages

If you don't want to produce N-up output right away or if you plan duplex printing, it is sometimes desirable to
produce a PDF that always has an even page count or a page count which is a multiple of N for the N-up
layout you want to achieve down the line. To automatically append pages to the PDF to achieve such a page
count, you can use the Awesomizr (p. 89) JavaScript library.

The autoFillPages() function dynamically inserts pages until the total page count is a multiple of the
indicated number. This function takes one object as optional parameter with the following properties:

Parameter Properties

Name Type Description Default

multiple number Pages will be filled up until the page count is a multiple of this property. 2

target string The filler page objects will be inserted as new children of the element matching
this selector.

"body"

template function A function that must return an HTMLElement which will be used as the filler
pages. Returning null or undefined skips the page. If no function is specified, a
custom element is inserted. The function receives the following three arguments:
The current index of the inserted filler page (starting at 0), the total number of filler
pages to be inserted, the total (original) page count of the document.

The empty pages that are inserted this manner can be styled further. The pages have the roFillerPage
name (p. 116) and the HTML elements that create them have the roFillerPage class.

config.setBookletMode(new BookletMode()
 .setSheetSize("A4 landscape")
 .setSheetMargin("1cm")
 .setRtl(false));

All languages (p. 521)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

160

6.21 Pixels per Inch

By default, lengths specified in pixels (i.e. via the CSS unit px or HTML attributes) are converted to physical
lengths at a rate of 96 pixels per inch. With the configuration property pixelsPerInch this can be
changed, e.g.:

Increasing the pixels per inch can be used to shrink documents that would be to wide for pages due to fixed
widths originally intended for screens.

Finding the optimum value can be automated using shrink to fit (p. 155).

6.22 Internationalization

6.22.1 Languages

PDFreactor supports Unicode and includes default fonts for various non-Latin languages. See Core Fonts
Pack (p. 195) for more information on the included fonts and Font Sources (p. 195) on how to add additional
fonts.

You can specify a language for the whole document either by using the HTML lang attribute or by
specifying a default in the API:

<html lang="de-DE">

The specified language will be used for automatic hyphenation (p. 118) of text and also conveys important
information to screen readers when reading accessible PDFs (p. 178). It is required to specify the document
language when producing accessible PDFs, otherwise PDFreactor may use "en-US" as the default.

Counters and list item markers can also be displayed in numerous languages and writing systems. See
Counter and Ordered List Style Types (p. 257) for all supported styles.

lang attributes can also be used to change the language for parts of the document.

6.22.2 Right-to-Left

PDFreactor analyzes the document to handle both left-to-right and right-to-left text correctly.

The base direction of the document defaults to left-to-right. You can set it to right-to-left by specifying the
dir attribute on the root element as in the following example:

<html dir="rtl">

config.setPixelsPerInch(120);
All languages (p. 522)

config.setDocumentDefaultLanguage("de-DE");
All languages (p. 523)

www.pdfreactor.com

6.21 Pixels per Inch

161

You can also override the base direction specifically for certain elements via the property direction :

div.hebrew {
 direction: rtl;
}

You can override the implicit text direction by combining direction with the property unicode-bidi :

span.forcertl {
 unicode-bidi: bidi-override;
 direction: ltr;
}

6.22.3 Text Direction Dependent Layouts

Using "logical" properties and values, as opposed to the common "physical" ones, allows layouts based on
the text direction, instead of fixed "left" and "right" sides. They are mapped to physical sides based on the
value of the direction property, which may be ltr (left-to-right, default) or rtl (right-to-left).

See

The "International Sample" document in the PDFreactor package demonstrates the usage of these properties and
values. It can be found in the "PDFreactor/samples/i18n" directory.

The following tables list the direction dependent logical properties and values as well as the resulting
physical ones for both left-to-right and right-to-left direction:

Logical Properties

Property LTR RTL

padding-inline padding-left padding-right padding-right padding-left

padding-inline-start padding-left padding-right

padding-inline-end padding-right padding-left

border-inline-start border-left border-right

border-inline-end border-right border-left

border-inline-start-color border-left-color border-right-color

border-inline-end-color border-right-color border-left-color

border-inline-start-style border-left-style border-right-style

border-inline-end-style border-right-style border-left-style

border-inline-start-width border-left-width border-right-width

border-inline-end-width border-right-width border-left-width

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

162

Property LTR RTL

border-start-start-radius border-top-left-radius border-top-right-radius

border-start-end-radius border-top-right-radius border-top-left-radius

border-end-start-radius border-bottom-left-radius border-bottom-right-radius

border-end-end-radius border-bottom-right-radius border-bottom-left-radius

margin-inline margin-left margin-right margin-right margin-left

margin-inline-start margin-left margin-right

margin-inline-end margin-right margin-left

inset-inline left right right left

inset-inline-start left right

inset-inline-end right left

New Logical Values for float and clear

Property LTR RTL

inline-start left right

inline-end right left

6.23 Media Queries

6.23.1 Media Types

Media Queries are a CSS3 extension of media types. Media types allow to have styles that are only applied if
the device or application displaying the document accepts the specified type. For example the following
media rule will only be applied if the device accepts the media type print (which PDFreactor does):

@media print {
 p {
 background-color: transparent;
 }
}

If the styles of a certain media type have to be applied, but that media type is not accepted by PDFreactor
(e.g. @media screen), the required media types can be set via API:

Continued

config.setMediaTypes("screen", "projection", "print");
All languages (p. 523)

www.pdfreactor.com

6.23 Media Queries

163

This example sets the three media types screen , projection and print , thereby overriding
PDFreactor's default types.

CSS that should only be used by PDFreactor can either be added by using the API or if they depend on the
specific document you can use the proprietary media type -ro-pdfreactor .

For example the following rule disables the page background color only if the document is used by
PDFreactor:

@media -ro-pdfreactor {
 @page {
 background-color: transparent;
 }
}

6.23.2 Media Features

Media Queries allow to make styles dependent on certain device features like width and height of the
viewport. As they extend media types they may start with one type which can be followed by media features,
each linked with the keyword and .

Media features describe certain device properties, are always enclosed by parentheses and resemble CSS
properties. Additionally, some features may be prefixed with min- or max- in order to express "greater or
equal to" and "less or equal to" relationships to their value.

@media print and (max-device-width: 1024px) {
 ...
}

The styles of this media rule are only applied if the device width is 1024px or less.

The device properties for conversions can be set using the API:

The following table provides an overview of the supported media features. The default values can also be
found in the PDFreactor API documentation.

Supported media features

Feature Name Description min-/
max-

Page Characteristics Media Features

aspect-ratio Calculated from width and height . The value is a fraction, e.g.
16/10 . The default value is derived from width and height .

Yes

device-aspect-ratio Calculated from the device-width and device-height . The
value is a fraction, e.g. 16/9 . The default value is derived from
device-width and device-height .

Yes

Continued

config.setMediaFeatureValues(new MediaFeatureValue()
 .setMediaFeature(MediaFeature.DEVICE_WIDTH)
 .setValue("1024px"));

All languages (p. 523)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

164

Feature Name Description min-/
max-

device-height The height of the rendering surface. The default value is 297mm (i.e.
A4 height)

Yes

device-width The width of the rendering surface. The default value is 210mm (i.e.
A4 width).

Yes

display-mode Represents certain aspects of how a web application shows the
content. This is not applicable for PDFreactor. The default value is
fullscreen.

No

height The height of the targeted display area. The default value is 257mm
(i.e. A4 height with 2cm top and bottom margin).

Yes

horizontal-viewport-segments The number of horizontal segments that the display has. This is not
applicable for PDFreactor. The default value is 1.

No

orientation Is portrait if height is greater than or equal to width , or
landscape otherwise. The default value is derived from device-
width and device-height.

No

overflow-block How overflowing content in block (i.e. vertical) direction is handled
when it is larger than the viewport. The default value is paged ,
except when enabling continuous output (see Continuous Output
(p. 112)), in which case it is set to none .

No

overflow-inline How overflowing content in inline (i.e. horizontal) direction is
handled when it is larger than the viewport. The default value is
none.

No

vertical-viewport-segments The number of vertical segments that the display has. This is not
applicable for PDFreactor. The default value is 1.

No

width The width of the targeted display area. The default value is 170mm
(i.e. A4 width with 2cm left and right margin).

Yes

Color Media Features

color The number of bits per color component of the output device. The
default value is 8 , except if the output was set to
forceGrayscaleImage (see Grayscale Image (p. 112)) in which
case it is set to 0 .

Yes

color-gamut Describes the approximate range of colors that are supported by the
UA and output device. This is not applicable for PDFreactor. The
default value is srgb.

No

Continued

Continued

www.pdfreactor.com

6.23.2 Media Features

165

Feature Name Description min-/
max-

color-index The number of entries in the color lookup table. The default value is
0 , except if the output format was set to gif in which case it is
256 .

Yes

dynamic-range Combination of brightness, contrast ratio, and color depth that are
supported by the user agent and the output device. This is not
applicable for PDFreactor. The default value is standard.

No

inverted-colors Indicates whether the content is displayed normally, or whether
colors have been inverted. The default value is none.

No

monochrome The number of bits per pixel in a monochrome frame buffer. The
default value is 0 , except if the output was set to
forceGrayscaleImage (see Grayscale Image (p. 112)) or to a
monochrome output format (certain tiff variants). In the first case
it is set to 8 and in the latter it is set to 1 (which means there is
only either black or white, but no grey).

Yes

Display Quality Media Features

environment-blending Used to query the characteristics of the user’s display so the author
can adjust the style of the document. The default value is opaque.

No

grid Whether the device is grid or bitmap based. The default value is 0. No

resolution The device resolution in dpi , dpcm or dppx . This also defines
the value of the window.devicePixelRatio property available
from JavaScript (p. 82).

Yes

scan Describes the scanning process of some output devices. This is not
applicable for PDFreactor. The default value is progressive.

No

update Used to query the ability of the output device to modify the
appearance of content once it has been rendered. The default value
is none.

No

-ro-output-format (proprietary) The output format of the conversion, either pdf ,
image or viewer (i.e. PDFreactor Preview app). This value can
not be overridden via the API configutation.

No

Interaction Media Features

any-hover Whether there is any available input device that allows the user to
hover over elements. This is not applicable for PDFreactor. The
default value is none.

No

Continued

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

166

Feature Name Description min-/
max-

any-pointer Whether there is any available input mechanism that is a pointing
device, and if so, how accurate is it. This is not applicable for
PDFreactor. The default value is none.

No

hover Whether the primary input device allows the user to hover over
elements. This is not applicable for PDFreactor. The default value is
none.

No

nav-controls Whether there is a user interfaces that provides navigation controls
(e.g. moving back in session history and changing the URL). The
default value is none.

No

pointer Whether the primary input mechanism is a pointing device, and if so,
how accurate is it. This is not applicable for PDFreactor. The default
value is none.

No

Video Media Features

video-color-gamut Describes the approximate range of colors that are supported by the
UA and output device's video plane. This is not applicable for
PDFreactor. The default value is srgb.

No

video-dynamic-range Represents the combination of max brightness, color depth, and
contrast ratio that are supported by the UA and output device's
video plane. This is not applicable for PDFreactor. The default value
is standard.

No

Scripting Media Features

scripting Detects whether JavaScript is available. The default value depends
on whether JavaScript is enabled. It is either initial-only or
none .

No

-ro-scripting Is initial-only when JavaScript is explicitly enabled, none
otherwise. This value can not be overridden via the API
configutation.

No

User Preference Media Features

forced-colors Tells whether the user-agent enforces a limited color palette. The
default value is none.

No

prefers-color-scheme Reflects whether the user prefers light or dark color themes. The
default value is light.

No

prefers-contrast Detects if the user has requested more or less contrast in the page.
The default value is no-preference.

No

Continued

Continued

www.pdfreactor.com

6.23.2 Media Features

167

Feature Name Description min-/
max-

prefers-reduced-data Detects if the user has a preference for being served alternate
content that uses less data for the page to be rendered. The default
value is no-preference.

No

prefers-reduced-motion Detects if the user has requested the system minimize the amount
of animation or motion it uses. The default value is reduce.

No

prefers-reduced-transparency Detects if the user has requested the system minimize the amount
of transparent or translucent layer effects it uses. The default value
is no-preference.

No

Note

PDFreactor does not take account of the values of CSS properties in the document when determining the values of
media features. For example, setting the page height to 50mm will have no effect on a media query that tests the
max-height of the document. Instead, the media features supported by PDFreactor all have default values (for

details see the Configuration.MediaFeature class in the PDFreactor API documentation). These default values
can be overridden through the PDFreactor API, with some exceptions that are determined automatically.

6.24 Document-Specific Preferences

PDFreactor allows setting certain configurations via the CSS of the document that is converted. This is done
using the proprietary at-rule @-ro-preferences .

Example:

@-ro-preferences {
 /* The first page of the document should not be a cover page */
 first-page-side: verso;
}

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

168

@-ro-preferences properties

Property Name Values Description

first-page-side left

 right

 verso

 recto

 auto (default)

Sets on which side the first page of the document
should be. By default it is right, unless the
document direction is right-to-left.

first-page-side-view left

 right

 verso

 recto

 auto (default)

Sets on which side the first page of the document
should appear in viewers, without impact on styles or
layout. By default it is the same side as set by
first-page-side.

page-layout 1 column

 2 column

 1 page

 2 page

 auto (default)

Sets the initial view mode for the document. Whether
two pages should be next to each other and how
scrolling between the pages should work.

initial-zoom [percentage]

 fit-page

 fit-page-width

 fit-page-height

 fit-content

 fit-content-width

 fit-content-height

 auto (default)

Sets the initial zoom factor when opening the
document. Can either be a specific percentage value
or the zoom factor can be computed dynamically so
that the page (or its content) fits into the window of
the viewer application. Please note, that not all fit-
values are supported by all viewers. Generally, fit-
page support is more common.

initial-page [number] Sets number of the page that should be scrolled to
when opening the document. The default value is 1 .
Values smaller than 1 are invalid.

Continued

www.pdfreactor.com

6.24 Document-Specific Preferences

169

Property Name Values Description

pages-counter-offset [number] Sets an optional offset to be added to the value of
the pages counter. Negative values are valid. The
default value is 0 .

pdf-shape-optimization visual (default)

 none

Sets whether shapes should be written into the PDF
in a way that prevents visualization issues in certain
PDF viewers.

6.25 Converting Large Documents

In most cases, PDFreactor is able to handle even very large documents, provided that enough memory is
made available (p. 14). However, if there is not enough memory available or if large tables cause conversions
to be too slow, PDFreactor offers specialized functionalities that disable certain resource intensive features to
allow processing such documents much more efficiently in regards to memory and time. Those can be used
separately or in combination.

6.25.1 Segmentation

Enabling segmentation allows PDFreactor to internally split conversions into multiple parts, drastically
reducing the amount of memory required for large documents. The minimum document size for this to be
noticeable depends on the complexity of the input document, but 5000 pages is a good estimate. This has no
visible influence on the resulting PDF document, i.e. the edges of segments are not discernible. However
there are some limitations:

 Regions (p. 144) are not supported.

 Shrink-to-Fit (p. 155) via pixelsPerInchShrinkToFit or -ro-scale-content is not supported.

 The pageOrder (p. 157) setting is not supported.

 The pages counter is not supported. This does not affect the "page" counter (p. 129), other counters or
named strings.

 Using the string() function outside of page margin boxes may cause unpredictable results. When it is
absolutely necessary it is highly recommended to use string-set on an ancestor element of the ones
using the value.

 tfoot and thead elements must be placed before the tbody or tr elements of the same table .
(If the document is not too large this can be corrected via JavaScript.)

 All style elements must be in the header.

 Due to the total amount of pages being unknown during the conversion of any segment but the last, log
output and progress monitoring cannot estimate the progress of the conversion.

 For the CSS functions target-counter (p. 130) and target-text (p. 130) to be able to access information
from previous segments the property -ro-target-candidate must be used. It is also important that
ID attributes are unique through the entire document.

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

170

 JavaScript (p. 82), when enabled, is run in a preprocessing step with no access to any layout information
and increases memory consumption to some extend.

If these restrictions are acceptable, the feature can be enabled in the PDFreactor configuration:

Some optional functionalities increase the amount of memory required, due to data accumulating over the
course of the entire conversion. These include links, bookmarks, tagging and logging at levels more verbose
than info .

6.25.2 Fast Tables

Very large tables have a significant impact on performance. Tables that have simple structures and only
basic sets of styles can be declared as fast tables, providing significantly better performance and lower
memory requirements at the cost of the following restrictions:

 Cell content is handled as a single line of text with uniform style and no influence on the table layout. If
there is too much content, it will overflow.

 Styles applied to the cells of the first two body rows are used for the rest of the table's content. Applying
different styles to the second row allows alternating even/odd styles. Styles set on the child nodes of cells
or other table body rows are ignored. Vertical borders (i.e. border-right) can not be alternated between
rows.

 The structure is homogeneous, with all body rows having the same height and the cells of the first row
(header or body) defining the widths of their columns. Widths are taken from style only, without
measuring content. Column or row spans are not supported. Missing row elements and other incorrect
structuring will lead to unexpected results.

 Supported styles on cells are: width , height , font-family , font-size , font-weight ,
font-style , font-stretch , line-height , text-align , vertical-align , color ,
background-color , border-right , border-bottom , padding and related shorthands.

 Supported styles on rows are: height , background-color and related shorthands.

 Supported styles on col elements are: width , background-color and related shorthands.

 The cell borders are created by using the border-right and border-bottom styles, creating a grid
between the cells, similar to the effect of border-collapse: collapse . The borders at the table
edges are created from the styles of the table element.

Table footer cells are an exception as they use their border-top styles (instead of border-bottom)
to create the horizontal border between body and footer cells.

 Repeating table header and footer groups are limited to one row each. Those are styled independently
from the table body.

 All lengths must be absolute, except for the widths of columns which also support percentages.

config.setSegmentationSettings(new SegmentationSettings()
 .setEnabled(true));

All languages (p. 524)

www.pdfreactor.com

6.25.2 Fast Tables

171

 The direction style set on the table element is also used for all cells. The unicode-bidi property
is not supported. BiDi processing is applied to the text when necessary as usual. Font fallback is done
based on the first character of each cell only. Specifying a font with sufficient glyphs is recommended.

 The vertical-align property only supports the values top , middle and bottom , all others
defaulting to top . This makes top the default behavior, except for HTML based tables, which default
to middle as usual. text-align does not support the values justify or justify-all .

 PDF tagging (p. 95) functionality has no access to the content of such tables. By default fast tables are
marked as artifacts, making them not accessible (p. 178).

If these restrictions are acceptable, the feature can be enabled by setting the style
display : -ro-fast-table on table elements. The style can be applied selectively, to affect only

specific tables of the document.

6.25.3 Recommendation for Large Documents

The convertAsync method should be used. See What API Method Should I Use? (p. 40) and Asynchronous
Conversions (p. 17) for details.

Important

Many PDF viewers and processors will not properly handle PDF files that are larger than 2GB.

6.26 Annotations

When using PDFs in a review process it is helpful to be able to effectively annotate the document. While
HTML already provides elements like ins and del , PDFreactor also offers more specialized features.

6.26.1 Comments

It is possible to add PDF comments to the document using the addComments configuration property like
this:

config.setAddComments(true);
All languages (p. 525)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

172

Depending on how the comment information is stored in your HTML source document, there are several style
rules that can be applied. The most common use-cases are to either create a comment from an empty
element (where any information is stored in its attributes) or to create a comment from a non-empty element
(where the content is the text encompassed by the element):

Example 121: Creating a comment from an empty element

HTML

CSS

span.comment {
 -ro-comment-content: attr(text);
}

Example 122: Creating a comment from a non-empty element

HTML

This text is commented

CSS

span.comment {
 -ro-comment-content: content();
}

There are different styles to visualize a comment in the PDF:

 note : Creates a small icon. This is the default style for all comments.

 invisible : Does not create any visual effects.

 highlight : Highlights the background of a section of text.

 underline : Underlines a section of text with a straight line.

 strikeout : Strikes out a section of text.

 squiggly : Underlines a section of text with a squiggly line.

The comment styles highlight , underline , strikeout and squiggly are only applicable to
comments that encompass a section of text.

www.pdfreactor.com

6.26.1 Comments

173

The following example demonstrates how to style a simple comment.

Example 123: Styling a comment

HTML

This is a styled comment

CSS

span.comment {
 -ro-comment-content: content();
 -ro-comment-style: underline;
}

Note

The visualization is ultimately dependent on the PDF viewer and may vary across viewers and/or platforms.

Comments can be customized further by using a variety of style rules. Besides content and style, you can
also customize the following properties:

 Title: The title of the comment. In some cases, this is also used for the author. Use the CSS property
-ro-comment-title to specify the title.

 Color: The color of the comment. The default value for the color depends on the comment style chosen.
Use the CSS property -ro-comment-color to set a color.

 Date: The date of the comment. When no date is specified, the current date is used. Use the CSS
property -ro-comment-date to set the date.

 Date Format: The format of the date you specified. The syntax is identical to Java's SimpleDateFormat23.
Use the CSS property -ro-comment-dateformat to specify a date format for the comment's date.

 Position: The position of the comment icon (only applicable for the comment style note). Use the CSS
property -ro-comment-position to specify a position for the comment's note icon.

 Initial state: The initial state of the comment, i.e. whether the comment should be open or closed when
the PDF is opened in a viewer. Use the CSS property -ro-comment-state to specify the initial state of
the comment bubbles. The state can be either open or closed with the latter being the default value.

23 SimpleDateFormat API documentation: https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

174

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

The following sample shows how to customize all of the aforementioned properties.

Example 124: Creating a customized comment

.comment {
 /* Content: get the content of the comment from the text content of the element */
 -ro-comment-content: content();
 /* Title: get the title from the "author" attribute of the element */
 -ro-comment-title: attr(author);
 /* Style: set the comment style to "note" */
 -ro-comment-style: note;
 /* Color: specify a color for the comment */
 -ro-comment-color: steelblue;
 /* Date: get the date from the "date" attribute of the element */
 -ro-comment-date: attr(date);
 /* Date Format: specify a custom date format */
 -ro-comment-dateformat: "yyyy/dd/MM HH:mm:ss";
 /* Position: shift the comment icon to the right side of the page */
 -ro-comment-position: page-right;
 /* Initial state: open comment bubbles when the PDF is opened */
 -ro-comment-state: open;
 /* additional styles */
}

Please see the documentation of the individual CSS properties for more information.

Advanced Comments

In some cases, comments have a separate start and end tag. In this case the additional style rules -ro-
comment-start or -ro-comment-end have to be set to match the comment's start and end elements.

Example 125: A comment with different start and end tags

commentstart {
 /* some customizations */
 -ro-comment-content: attr(text);
 -ro-comment-title: attr(author);
 -ro-comment-style: highlight;

 /* define the comment start element */
 -ro-comment-start: attr(uid)
}

commentend {
 /* define the comment end element */
 -ro-comment-end: attr(uid);
}

Note

To actually create a comment, you need to specify at least one of the following CSS properties:
-ro-comment-content , -ro-comment-style , -ro-comment-start , or -ro-comment-end .

6.26.2 Change Bars

Especially when marking only a single word or even less, the usual highlighting styles may not be enough. In
such cases, PDFreactor's Change Bars can help to draw attention. A change bar is simply a colored line next
to the content, on the same height as the element that enabled it.

www.pdfreactor.com

6.26.2 Change Bars

175

The proprietary property -ro-change-bar-color enables them when set to a color.

Example 126: Enabling change bars for ins and del elements

ins {
 -ro-change-bar-color: yellowgreen;
}

del {
 -ro-change-bar-color: orangered;
}

To prevent different kinds (i.e. colors) of change bars from overlapping, each change bar can be assigned a
different offset from the page content edge, by setting -ro-change-bar-offset .

Alternatively, it is also possible to move a change bar to the other page side altogether by using -ro-
change-bar-align . This property defines where the change bars are positioned. By default, the bars are
positioned in the left (or right) page margin area. If they come from a multi-column element, however, it
makes sense to position them next to the columns.

Example 127: Change Bar settings for multi-column

.multi-column ins {
 -ro-change-bar-color: yellowgreen;
 -ro-change-bar-width: thick;
 -ro-change-bar-align: outside column;
}

In the sample above, the bars will be placed next the respective column, while the side of the column
depends on the side of the page. With outside meaning right side for right pages and left side for left
pages. There is another special setting best used for multi-columns with only two columns. The value
distribute-column is combined with page and distributes the change bars on the left and the right side

of the page, depending on which side is closer to the column in which the change bar originates.

Example 128: Special change bar setting for multi-column

.multi-column ins {
 -ro-change-bar-color: yellowgreen;
 -ro-change-bar-align: outside distribute-column page;
}

Lastly, it is also possible to block change bars next to certain elements. This is done via the CSS property
-ro-change-bar-exclusion . By setting it to all , the painting of every change bar on the same vertical

position as the respective element is blocked.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

6. Layout Documents

176

By giving change bars specific names via the CSS property -ro-change-bar-name , the exclusion can
also be applied to selected change bars only.

Example 129: Excluding a certain change bar

ins {
 -ro-change-bar-color: yellowgreen;
 -ro-change-bar-align: outside distribute-column page;
 -ro-change-bar-name: insertion;
}
.exclude {
 /* Block two named change bars next to elements with this class */
 -ro-change-bar-exclusion: insertion, deletion;
}

Note that different change bars may share the same name, which allows to exclude them by groups.

www.pdfreactor.com

6.26.2 Change Bars

177

7. ACCESSIBILITY
Accessibility describes the possibility of making the content of a document available to the reader in a non-
traditional or augmented way. When properly implemented, this grants readers with certain disabilities such
as visual impairments or reading disorders access to all the information in the document.

There may also be various legal requirements in your country, such as Section 508 of the Rehabilitation Act
in the United States, which demand accessible PDFs. Since this topic is highly complex and depends on your
and your customers' countries, we will not go into further detail and this chapter is without any claim to
completeness.

Accessible PDF documents require tagging (p. 95). Tagged PDF files contain information about the structure,
semantics and reading flow of the document. This information is stored in a tree structure of so-called "PDF
tags"24.

For accessible documents it is recommended to use PDF/UA (p. 97)25 conformance. PDF/UA is the informal
name for ISO 14289, the international standard for accessible PDF technology. Enabling PDF/UA
conformance in PDFreactor automatically enables tagging and adds the required metadata to the PDF so that
viewers or readers recognize the document as an accessible PDF/UA document. It can optionally be
combined with PDF/A conformance, in which case we recommend PDF/A-3a over PDF/A-1a, as the latter
imposes some limitations on the fidelity of tagging.

7.1 Automatic PDF Tagging

PDFreactor automatically determines the PDF tags not only from the HTML elements and CSS styles of the
input document, but also from the resulting layout. This means that PDFreactor can even correctly tag
complex structures automatically, including the following example cases. Block elements that directly contain
text are always tagged as paragraphs so that the tag tree of the PDF remains valid. Tables spanning multiple
pages with repeating headers and footers don't have those repeated in the tagging structure. Special
document areas such as the footnote area are tagged as an "artifact", meaning the area is ignored by screen
readers. The footnotes themselves are tagged in such a way that they are read as natural part of the normal
text flow, so that the reading experience is not interrupted.

WAI-ARIA (p. 180)26 attributes in the input document are taken into account and can be used to manually
override automatically determined tag types. There are also custom CSS properties (p. 185) that allow
overriding the automatic determination or configuring it for best results.

24 https://helpx.adobe.com/acrobat/using/editing-document-structure-content-tags.html#standard_pdf_tags
25 PDF/Universal Accessibility
26 Web Accessibility Initiative – Accessible Rich Internet Applications

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

178

https://helpx.adobe.com/acrobat/using/editing-document-structure-content-tags.html#standard_pdf_tags

7.2 Authoring Requirements

The quality of automatic (p. 178) tagging depends highly on the quality of the input documents. Authors must
ensure the content is properly structured and contains all required metadata. The following are the most
important points to consider:

 Use only valid and well-structured HTML

 Specify the document language (see Languages (p. 161))

 For headings use either h1 to h6 elements or nested section elements in combination with only h1

 Provide alternative text for images, e.g. via the alt attribute of the img element

 Use caption and header elements for tables

 Irrelevant elements, such as ones used exclusively as decorations, must be tagged as artifacts, so they
are ignored (See ARIA (p. 184) and CSS (p. 186) examples)

 Use WAI-ARIA attributes (p. 180) or styles (p. 185) to further customize accessibility information if
necessary

For example, the following HTML markup is syntactically valid, but produces non-optimal accessibility data:

<h1>Document Title</h1>
<h1>Heading</h1>

<table>
 <tr>
 <td>Col 1</td>
 <td>Col 2</td>
 </tr>
 <tr>
 <td>A</td>
 <td>B</td>
 </tr>
</table>

Better markup would be the following, which includes additional information such as alternative text for
images as well as table captions and column headers:

<h1>Document Title</h1>
<section>
 <h1>Heading</h1>

 <table>
 <caption>My Table</caption>
 <thead>
 <tr>
 <th>Col 1</th>
 <th>Col 2</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>A</td>
 <td>B</td>
 </tr>
 </tbody>
 </table>
</section>

www.pdfreactor.com

7.2 Authoring Requirements

179

Even without any further information or configuration, PDFreactor will automatically create an appropriate tag
tree for the document snippet above. The result can be seen in the following screenshot:

Fig. 8: The tag tree of a PDF/UA document

7.3 Controlling Tagging with WAI-ARIA

WAI-ARIA is a technical specification published by the W3C27. It specifies how to enhance the accessibility of
web content and web applications. PDFreactor supports a subset of version 1.2 of this specification to
enhance the accessibility of HTML documents intended for paginated output. It allows overriding the
automatically (p. 178) determined tag types.

27 World Wide Web Consortium

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

180

7.3.1 Roles

The role HTML attribute is used to convey semantic meaning of document components to screen readers.
Roles are mapped to PDF tag types as follows:

Supported Roles

Role Tag Notes

Document structure roles

article Art Identical to HTML article element.
Note: PDFreactor tags article as "Div" for backwards compatibility.

cell TD Identical to HTML td element.

columnheader TH Identical to HTML th[scope="column"]. The Scope attribute of the tag is set
to Column.

heading H

H1 With aria-level="1". Then identical to HTML h1 element.

H2 With aria-level="2". Then identical to HTML h2 element.

H3 With aria-level="3". Then identical to HTML h3 element.

H4 With aria-level="4". Then identical to HTML h4 element.

H5 With aria-level="5". Then identical to HTML h5 element.

H6 With aria-level="6". Then identical to HTML h6 element.

img Figure Child elements and content are ignored.

list L Identical to HTML ol and ul elements.

listitem LI Only inside role="list". Then identical to HTML li element.

TOCI Only inside role="directory".

directory TOC

math Formula

row TR Identical to HTML tr element.

rowgroup TBody Identical to HTML tbody element.

THead When first rowgroup and containing more columnheaders than cells.
Then identical to HTML thead element.

Continued

www.pdfreactor.com

7.3.1 Roles

181

Role Tag Notes

rowheader TH Identical to HTML th[scope="row"]. The Scope attribute of the tag is set to
Row.

separator artifact Ignored, including child elements and content. Identical to HTML hr element.

table Table Identical to HTML table element.

caption Caption Identical to HTML caption element.

tooltip artifact Ignored, including child elements and content.

code Code Identical to HTML code element.

paragraph simple-block Div or P depending on content.

generic simple Results in Div, P or Span depending on context.

Landmark roles

banner Part Identical to HTML header element.

complementary Part Identical to HTML aside element.

contentinfo Part Identical to HTML footer element.

form auto Tagged like a container with no role. See Form widget roles (p. 182) below for
details on form elements.

main Part Identical to HTML main element.

navigation Part Identical to HTML nav element.

region Sect Identical to HTML section element.

Form widget roles.

button Form Tagged as button. Supports the ARIA attribute aria-checked.

checkbox Tagged as checkbox. Supports the ARIA attribute aria-checked.

combobox Tagged as text field.

listbox Tagged as text field.

menuitemcheckbox Tagged as checkbox. Supports the ARIA attribute aria-checked.

menuitemradio Tagged as radio button. Supports the ARIA attribute aria-checked.

Continued

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

182

Role Tag Notes

radio Tagged as radio button. Supports the ARIA attribute aria-checked.

searchbox Tagged as text field.

slider Tagged as text field.

spinbutton Tagged as text field.

switch Tagged as checkbox. Supports the ARIA attribute aria-checked.

textbox Tagged as text field.

Other widget roles.

grid Table

gridcell TD

scrollbar artifact Ignored, including child elements and content.

tree L

treegrid Table

treeitem LI Only inside role="tree".

Live region and window roles.

alert artifact Ignored, including child elements and content.

alertdialog

dialog

log

marquee

status

timer

Presentation roles

none none Ignored by tagging, but child elements are tagged normally.
The only exceptions are table and list elements, for which a presentation
role affects the whole structure, turning it into a sequence of blocks.presentation

Continued

www.pdfreactor.com

7.3.1 Roles

183

7.3.2 States and Properties

WAI-ARIA attributes can be used to convey specific states to assistive technology. While most of the states
are intended for interactive websites, PDFreactor supports a small subset that can be translated into
accessibility information of static PDFs. Supported states and properties are:

 aria-checked
 aria-hidden
 aria-describedby
 aria-label
 aria-labelledby
 aria-level
 aria-selected
 aria-valuenow
 aria-valuetext

7.3.3 Accessible Name and Description

The ARIA specification uses certain attributes (such as aria-describedby) and HTML elements (such as
label) to determine an accessible name and description for document components. PDFreactor supports

this approach and automatically maps this accessibility information to appropriate PDF data structures, the
PDF tags (p. 185).

Please refer to the well-documented WAI-ARIA specification28 on how to properly use ARIA roles, states and
properties to provide accessibility information.

7.3.4 WAI-ARIA-based Tagging Examples

If your document uses custom elements for headings, you can tag those as proper headings like this:

<div aria-role="heading" aria-level="1">My heading</div>

Note

Using ARIA attributes to specify headings also sets the matching PDF bookmark (p. 90) level.

Content such as components that don't work in PDFs and should be ignored by screen readers can be
tagged as artifact, eliminating the element and its subtree from being tagged, like this:

<div aria-role="dialog">A dialog that cannot be displayed in PDF</div>

Similarly elements, and their subtree, can be removed without changing their role, using the attribute
aria-hidden :

<div aria-hidden="true">
 <p>Decorative or otherwise irrelevant content</p>
</div>

28 https://www.w3.org/TR/wai-aria-1.2/

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

184

https://www.w3.org/TR/wai-aria-1.2/

Artifacts are excluded from tagging, including their entire subtree. You can also exclude a single container
element while keeping its content:

<div aria-role="presentation"> <!-- Irrelevant container -->
 <p>Relevant text</p>
</div>

Example 130: Tagging a Pseudo-Table

A structure that is semantically a table, but does not consist of table elements or elements with table
display styles, and so is not laid out as a table, just needs table roles for PDFreactor to tag it as a table
structure. In cases like the following, the first row group is also automatically tagged as thead , when it
has more header cells than other cells.

<div role="table">
 <div role="rowgroup">
 <div role="row">
 Cell H / 1
 Cell H / 2
 </div>
 </div>
 <div role="rowgroup">
 <div role="row">
 Cell 1 / 1
 Cell 1 / 2
 </div>
 <div role="row">
 Cell 2 / 1
 Cell 2 / 2
 </div>
 <div role="row">
 Cell 3 / 1
 Cell 3 / 2
 </div>
 <div role="row">
 Cell 4 / 1
 Cell 4 / 2
 </div>
 </div>
</div>

Note

When using conflicting ARIA attributes and CSS (p. 185) for tagging, the CSS properties take precedence. Setting
-ro-pdf-tag-type to auto disables the processing of role attributes for the affected elements, as that

processing is implemented via a user agent style sheet.

7.4 Controlling Tagging with CSS

When the automatic (p. 178) determination of PDF tags must be overridden and WAI-ARIA attributes are
insufficient or inconvenient, proprietary CSS properties can be used, either in the document or in a user style
sheet.

www.pdfreactor.com

7.4 Controlling Tagging with CSS

185

file:/opt/builds/PDFreactor/pr-ci/doc/wai-aria

7.4.1 Overriding or Configuring Tag Type Determination

The proprietary CSS property -ro-pdf-tag-type can be used in various ways to ensure the correct tag
types for elements and structures. The initial value is auto , which means that PDFreactor will automatically
(p. 178) determine the tag type. In most cases this results in correct tagging without the need for manual
intervention.

However, there are cases where the structure of the HTML and the resulting layout do not match the intended
semantic structure. For example a table could be created from styled div and span elements. Conversely
an HTML table could be used just for layout.

If your document uses custom elements for headings, you can tag those as proper headings like this:

div.heading1 {
 -ro-pdf-tag-type: h1;
}

Note

For headings set via CSS it is highly recommended to also set the matching bookmark (p. 90) level.

Content such as components that don't work in PDFs and should be ignored by screen readers can be
tagged as artifact like this:

div.decoration {
 -ro-pdf-tag-type: artifact;
}

Artifacts are excluded form tagging, including their entire subtree. You can also exclude a single container
element while keeping its content:

div.irrelevantContainer {
 -ro-pdf-tag-type: none;
}

It is also possible to ensure the tag type is determined from layout information, ignoring role attributes:

ol, ul, li {
 -ro-pdf-tag-type: auto;
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

186

Series of Examples for Safely Overriding Tag Types

The following series of example shows how to correctly and safely tag an ol element with the class
"nonlist", that is intended to be considered just a sequence of paragraphs instead of a list. It starts with the
most simple approach, which is also compatible with older versions of PDFreactor, and then introduces more
advanced concepts, which are highly recommended for best results:

Example 131: Using Types

With regards to accessibility the ol and li elements should be treated like the div and p elements,
respectively.

<div>
 <p>A paragraph</p>
 <p>A paragraph</p>
</div>
<ol class="nonlist">
 A list item, to be considered a paragraph
 A list item, to be considered a paragraph

<div>
 <p>A paragraph</p>
 <p>A paragraph</p>
</div>

The most simple style to turn that list into a sequence of paragraphs is to use -ro-pdf-tag-type with a
<pdf-standard-structure-type> .

ol.nonlist {
 -ro-pdf-tag-type: div;
}
ol.nonlist > li {
 -ro-pdf-tag-type: p;
}

www.pdfreactor.com

7.4.1 Overriding or Configuring Tag Type Determination

187

Example 132: Using Kinds

The previous sample assumes that every li element in such a list only contains inline content, like text.
However, the following is also valid HTML:

<div>
 <p>A paragraph</p>
 <p>A paragraph</p>
</div>
<ol class="nonlist">
 A list item, to be considered a paragraph
 <p>A paragraph inside a list item, to be considered a paragraph inside a
block</p>

<div>
 <p>A paragraph</p>
 <p>A paragraph</p>
</div>

The first li requires the type p , while the second one requires div . To automatically use the right type
for a specific scenario you can specify a <pdf-tag-kind> instead of a specific type. (See the table
below (p. 189) for a list of kinds and their matching types.)

ol.nonlist {
 -ro-pdf-tag-type: simple-block-strict;
}
ol.nonlist > li {
 -ro-pdf-tag-type: simple-block;
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

188

Example 133: Using Conditions

While the second example will ensure a valid and useful PDF tag tree for most common scenarios, some
complex documents require one further step. Consider the following, comparatively artificial, sample
HTML:

<div style="display: table">
 <ol class="nonlist" style="display: table-row-group">
 <li style="display: table-row">
 <p style="display: table-cell">Content</p>

</div>

The sample creates a table by using explicit 'display' styles. When no tagging styles are applied the
automatic (p. 178) tag type determination will correctly tag the ol and li elements as TBody and TR ,
respectively, based on them being laid out as parts of a table.

Using the styles from one of the previous examples would change the tags of those elements, breaking the
table structure in the tag tree. To automatically avoid this, but still affect HTML structures like in the
previous examples, you can add conditions, that ensure types or kinds are only overridden when the
automatic tag type determination had a specific result, which can be specified as a type or kind, in this
case list-struct .

Each condition is specified as part of a pair, first the condition then the type or kind to use when it is met.
Multiple such pairs can be specified, separated by commas. Those are tried in order and the first match is
applied. For the case when no condition applies, a single type or kind can be specified after a final comma.
When this is omitted the default behavior is auto . "type or kind" also includes auto , none and
artifact .

ol.nonlist {
 -ro-pdf-tag-type: list-struct simple-block-strict;
}
ol.nonlist > li {
 -ro-pdf-tag-type: list-struct simple-block;
}

Full List of PDF Tag Kinds and What Types They Match

Kind Div P Span NonStruct,
artifact, none

L, LI,
Lbl, LBody

Table, TBody, THead, TFoot,
TR, TD, TH, Caption

simple

simple-block

simple-block-strict

simple-inline

list-struct

table-struct

www.pdfreactor.com

7.4.1 Overriding or Configuring Tag Type Determination

189

7.4.2 Overriding or Specifying Attributes

In addition to the tag type, PDFreactor also automatically determines some attributes for each tag. As with
the type, it may be necessary to override or specify those manually. For that you can use the following CSS
properties:

Property Summary Description

-ro-pdf-tag-alt Alternative
text

Used to describe content that does not have a textual
representation, such as an image.

-ro-pdf-tag-table-summary Table
summary

Used to provide a summary for a table.

-ro-pdf-tag-header-cell-scope Header cell
scope

Used to indicate whether a table header cell (TH) relates
to its column or its row.

-ro-pdf-tag-actual-text Actual text Used to describe text that is not rendered as it is read, for
example as stylized text or in all caps.

-ro-pdf-tag-expanded Expansion
Text

Used to describe an acronym or vernacular.

-ro-formelement-name Form element
name

Used to specify the name for form elements.

-ro-pdf-tag-form Form type Used to specify the type of a non-interactive form
element.

-ro-pdf-tag-form-checked Form checked
state

Used to specify whether a non-interactive checkbox or
radio button is checked.

-ro-radiobuttonelement-group Radio group Used to specify the name for a group of radio buttons.

The default value for the -ro-pdf-tag-* CSS properties is auto , which will automatically populate the
matching PDF attributes (or leave them blank if appropriate).

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

190

Properties specifying text attribute, like alternative text, optionally take a comma-separated list of items. The
first item whose resolved value is non-empty will be used for the resulting value. Each item can consist of
multiple space-separated values which are then concatenated. You also have direct access to the ARIA
specification's accessible name and description via the CSS values aria-name and aria-description ,
respectively.

Example 134: Customize image alternative text via CSS

The following style declaration is used to customize the alt text of image elements.

img {
 -ro-pdf-tag-alt: attr("data-alt-text"), auto, "Image " counter(images);
}

To determine the resulting value, PDFreactor iterates the list items from left to right, using the first item
with a non-empty value:

1. The first item in the value list takes the text directly from a custom data-alt-text HTML
attribute. If the attribute's value is empty or the attribute is not present, the next item is evaluated.

2. The second item's value is auto , which means PDFreactor tries to find an alternative text
automatically, depending on the element, its styles, attributes and context. If no alternative text can
be determined, the next item is evaluated.

3. The third item consists of a concatenation of the string "Image " and the value of the custom counter
"images". Assuming that this is the seventh image, this would result in the string "Image 7". Note
that such a string this is not considered best practice since it does not convey any meaningful
information. It is presented here merely as a technical example.

Example 135: Customize tagging using ARIA values

In certain cases it might be useful to use both the ARIA name and description for tagging data.

.myAccessibleElements {
 -ro-pdf-tag-alt: aria-name ": " area-description;
}

In this example, a concatenation of the ARIA name and description is used for the alternative text. Since
PDF tags don't have attributes for both values, such an approach may only be appropriate for certain use
cases.

Note

When using conflicting ARIA (p. 180) attributes and CSS for tagging, the CSS properties take precedence. Setting
-ro-pdf-tag-type to auto disables the processing of role attributes for the affected elements, as that

processing is implemented via a user agent style sheet.

7.5 Creating Tagged PDFs from Non-HTML Input Documents

When using XML documents as input, instead of HTML, PDFreactor will still automatically (p. 178) determine
tag types and attributes based on the layout. However, further CSS (p. 185) is necessary to cover semantic
information.

www.pdfreactor.com

7.5 Creating Tagged PDFs from Non-HTML Input Documents

191

Most importantly correct tag types (p. 186) have to be ensured. In DocBook XML, for example, you can map
the "title" elements inside "sect1" elements to the PDF tag type H2 (heading, level 2):

sect1 > title {
 -ro-pdf-tag-type: simple-block h2;
}

There are also relevant tag attributes (p. 190), especially the alternative text for images. You can use the
"desc" attributes of "image" elements for that, like this:

image {
 -ro-pdf-tag-type: figure;
}
image[desc] {
 -ro-alt-text: attr(desc);
}

For form elements, you can use the CSS property -ro-formelement-name to define which elements or
attributes in the input document are used as the source for the names of form elements in the generated
PDF. When converting HTML, the names are adopted from the value attribute of the form element.

Using the -ro-radiobuttonelement-group property, the name for radio button groups can be adopted
in the same way. By default, it will be adopted from the name attribute of the radio button element.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

7. Accessibility

192

8. USER AGENT
The User Agent is an optional object that is created independently from PDFreactor and can be passed to
multiple PDFreactor conversions. When a User Agent object is used, all PDFreactor conversions that are
configured with this object will share a single HTTP client implementation. This means that these conversions
share a common cookie store and (if enabled) a HTTP resource cache.

Important

Do not use a common User Agent for conversions from different parties! This is considered insecure as conversions
may find out information about other conversions by e.g. sniffing the cookie store or the HTTP cache.

8.1 Security Settings

The User Agent uses security settings (p. 51) similar to the Configuration object since it is a security critical
component. When using a User Agent, its security settings override any security settings of the
Configuration, even if these are more specific. So it is recommended to not specify any security settings at all
on the Configuration object when using a User Agent.

8.2 Network Settings

Similar to security settings, the User Agent also uses network settings (p. 64) to specify connection behavior.
These also override any network settings of the Configuration.

8.3 HTTP Cache

Browser-like HTTP caching can be enabled when using a User Agent. This is useful if you convert many
documents that use a lot of identical cacheable resources like images. The cache is file system based and
persists beyond the lifetime of a single conversion. There are various configuration options to ensure that the
cache does not exceed certain limits, as you only have indirect control over its contents.

The HTTP Cache can be configured in several ways:

 path — The file system path to a directory where the cached resources will be stored. Please note that
the contents of this directory must not be manipulated directly as this can lead to unexpected behavior
during conversions.

 maxEntries — The maximum number of entries that are allowed in this cache. If the number is
exceeded, old entries will be discarded. The default value is 100.

 maxObjectSize — The maximum number of bytes a resource may have to be cached. Larger
resources won't be cached. The default value is 5,000,000 bytes, i.e. 5MB.

www.pdfreactor.com

8. User Agent

193

The maximum size of the HTTP Cache can be determined by multiplying maxEntries by
maxObjectSize . So by default, the HTTP cache would not exceed 500MB.

8.4 PDFreactor Web Service

The User Agent can only be configured on the server-side via the userAgentEnabled (p. 212) server
parameter. This parameter enables a User Agent for all conversions performed by this service. Server
parameters to configure security settings and network settings now apply to the User Agent, as to the server
parameters for HTTP cache settings.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

8. User Agent

194

APPENDIX A: FONTS
To be able to display text PDFreactor requires font data. This font data must be in TTF29 or in OTF30 format
and may come from different types of sources (see Font Sources (p. 195)).

Note

Using OpenType fonts with CFF outlines requires Java SE 9 or higher.

A.1 Font Sources

The font data of PDFreactor may come from different types of sources.

A.1.1 Core Fonts Pack

PDFreactor contains fonts that will be used for the Default Font Mapping (p. 199) when no other fonts could
be registered on the system, e.g. because of insufficient file permissions or due to the fact that there are no
fonts available.

These fonts are distributed by RealObjects and licensed by their respective authors under the SIL Open Font
License31, the Apache License 32 or are in the Public Domain.

The packaged core fonts are:

Original Font Name Type PDFreactor Font Name License

Arimo sans-serif RealObjects core sans-serif Apache License, Version 2.0

Tinos serif RealObjects core serif Apache License, Version 2.0

Cousine monospace RealObjects core monospace Apache License, Version 2.0

Dancing Script cursive RealObjects core cursive SIL Open Font License, Version 1.1

Orbitron fantasy RealObjects core fantasy SIL Open Font License, Version 1.1

Quivira symbol RealObjects core symbol Public Domain (http://en.quivira-
font.com/notes.php)

29 True Type Font
30 Open Type Font
31 A free and open source license designed for fonts (https://openfontlicense.org/documents/OFL.txt)
32 A permissive free software license written by the Apache Software Foundation (https://www.apache.org/licenses/LICENSE-2.0)

www.pdfreactor.com

APPENDIX A: Fonts

195

http://en.quivira-font.com/notes.php
https://openfontlicense.org/documents/OFL.txt
https://www.apache.org/licenses/LICENSE-2.0

Additionally the core fonts contain fallback fonts for symbols and characters from non-Latin languages.
Those are the Noto fonts (SIL Open Font License 1.1), Nanum Gothic (SIL Open Font License 1.1), and
Droid Sans Fallback (Apache License 2.0).

A.1.2 System and JVM Font Directories

The main sources PDFreactor uses to retrieve font data are:

 fonts registered with the Java VM

 fonts located in system font folders

Both provide fonts physically available to PDFreactor.

PDFreactor registers fonts from these sources automatically. Java VM fonts are usually located in
"JAVA_HOME/jre/lib/fonts". The location of system font folders is platform dependent:

Windows

 System Root (usually C:\Windows)\fonts
 User Home\AppData\Local\Microsoft\Windows\fonts

macOS

 /Library/fonts
 /System/Library/fonts
 User Home/Library/fonts
 /Network/Library/fonts/

Linux/Unix

 /usr/share/fonts
 /usr/local/share/fonts
 User Home/.fonts
 User Home/.local/share/fonts

On Linux, not all required system libraries may be installed on the system by default.

To use system fonts on Linux, the fontconfig system library and some basic fonts such as
dejavu fonts must be installed.

For Image Output (p. 110) PDFreactor also requires X11FontManager , libpng , and libfreetype .
These libraries and basic fonts are dependencies of the Fontconfig package, which is available for common
Linux distributions.

Note

PDFreactor can be configured to ignore all system fonts and only use fonts that either have been specifically added via
configuration properties or that are web fonts from style sheets. This is useful if the system either has no fonts or if you
want to avoid system-dependent output. See Controlling the Font Registration and Caching Mechanism (p. 198) for
examples.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX A: Fonts

196

If PDFreactor was unable to retrieve any font data, fonts from the Core Fonts Pack will be used. (see Core
Fonts Pack (p. 195)).

A.1.3 Additional Fonts & Font Directories

PDFreactor allows setting additional fonts that are neither located in the system font directory nor the font
directory of the Java VM. These fonts still need to be physically available to PDFreactor.

To register these fonts with PDFreactor via the API, use the following configuration properties:

 fontDirectories — The fonts in the specified directories and all their subdirectories will be used by
PDFreactor.

 fonts — Additional fonts from a specified source URL.

For each directory added by the fontDirectories property and for each of their subdirectories, a
separate font cache is created. Should the contents of these directories change, please delete the font cache
files before running PDFreactor. See the Chapter The Font Cache Mechanism (p. 197) for more information
about the font cache.

Font directories can be added like this:

Instead of adding entire font directories that PDFreactor will scan, you can also add specific fonts like this:

See

See Docker Configuration (p. 49) on how to deploy fonts when using the PDFreactor Docker image.

A.1.4 CSS Defined Fonts

PDFreactor is capable of using fonts defined in CSS via the @font-face rule. These fonts are retrieved by
PDFreactor along with other resources of the document (e.g. images) and will only be used to render the
document they belong to.

Example 136: Defining a custom font

@font-face {
 font-family: "My Font";
 src: url("https://www.my-server.com/fonts/my-font.ttf");
}

A.2 The Font Cache Mechanism

PDFreactor uses a font cache to store required information about available fonts.

All languages (p. 525)

config.setFonts(
 new Font().setFamily("My Font")
 .setBold(true)
 .setItalic(true)
 .setSource("https://url/to/font.ttf"));

All languages (p. 526)

www.pdfreactor.com

A.1.3 Additional Fonts & Font Directories

197

A.2.1 Font Cache Lifecycle

One of the steps PDFreactor performs on startup is registering fonts. The first time this is done will take some
time since every font inside the font directories available to PDFreactor will be identified and registered.

At the end of this step PDFreactor creates a font cache that will be used on subsequent conversions to
increase performance. The font cache persists until the Java VM running PDFreactor is terminated.

Font Cache Files

If so configured (see Controlling the Font Registration and Caching Mechanism (p. 198)), PDFreactor can
write its font cache onto the file system so that it persists between Java VM restarts. This significantly
reduces startup time as it ensures the rendering process will start as soon as possible.

If font cache files are present, new fonts put into the font directories available to PDFreactor will be ignored
by PDFreactor unless the font cache files have been deleted. Then PDFreactor will create new font cache
files on the next startup as it would on its first one.

To delete the font cache files, visit the "webservice/jetty-base-pdfreactor/pdfreactor/fontcache" directory of
your PDFreactor installation (unless otherwise configured, see Customizing the Server Configuration (p. 33))
and delete all files inside it.

A.2.2 Controlling the Font Registration and Caching Mechanism

It is possible to customize the registration and caching of fonts via the API.

The following configuration properties are used to control the font handling behavior of PDFreactor:

 cacheFonts — Activates or deactivates the file system font cache.

 fontCacheDir — Specifies the location where the font cache files should be stored.

 disableSystemFonts — If set to true, PDFreactor will neither register system fonts, nor use the font
cache file for them if it exists.

 disableFontRegistration — Specifies that parts of the font caching mechanism should be
disabled. This is a legacy property. In nearly all cases you should use either cacheFonts or
disableSystemFonts .

To optimize startup time in scenarios where the PDFreactor library's Java VM is frequently restarted, it is
recommended to enable a font cache. The PDFreactor Web Service automatically caches fonts.

As mentioned before, the default font cache files are located in the "user.home/.PDFreactor" directory. To
customize this location, you can use the configuration property fontCachePath .

PDFreactor can be configured to ignore all system fonts and only use fonts that either have been specifically
added via configuration properties or that are web fonts from style sheets:

All languages (p. 527)

All languages (p. 527)

All languages (p. 528)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX A: Fonts

198

A.3 Font Matching

A.3.1 Matching Generic Font Families

Browsers usually match the generic font families with fonts installed on the host system, but PDFreactor
consciously matches them with its own specific core fonts. This is done so that documents which use generic
font families look consistent across all systems, no matter which fonts (if any) are installed.

Should it be required to match generic font families with other fonts, it is recommended to use Font Alias
Names (p. 199) to e.g. map the family name "serif" to the desired font.

The generic font families are mapped as follows:

Generic Font Mapping

Generic Font Family Matched Core Font System Font Example

sans-serif Arimo Arial

serif Tinos Times New Roman

monospace Cousine Courier New

cursive Dancing Script Comic Sans MS

fantasy Orbitron Impact

A.3.2 Font Alias Names

It is possible to add a font alias name for a font available in the system font directory or the font directory of
the Java VM. The font alias name allows referencing to a font using a different name.

Authors can thus use a font alias name as the font-family value in CSS instead of the actual font name.
Exchanging the font in all these documents can be done by changing the actual font behind the alias.

To define a font alias name via the Java API use the following configuration property:

 fontAliases — Alias families for registered fonts.

The following example maps the registered font Arial to the name "My Font". So each time you refer to the
name "My Font" in CSS, Arial is used internally.

config.setFontAliases(
 new Font().setFamily("My Font")
 .setSource("Arial"));

All languages (p. 528)

www.pdfreactor.com

A.3 Font Matching

199

A.3.3 Automatic Font Fallback

Whenever the current font cannot be used to display a certain character, an automatic font fallback is used to
find a replacement font for this character. To do so fonts are iterated according to the following parameters:

1. The font-family property of the current element

2. The configuration property fontFallback

3. An internal list of recommended fonts

4. All fonts on the system, starting with those with the most glyphs

A list of fallback fonts can be specified like this:

config.setFontFallback("My Font", "Arial");
All languages (p. 529)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX A: Fonts

200

APPENDIX B: JAVASCRIPT
OBJECTS AND TYPES

B.1 Objects

ro

The ro or window.ro object provides access to PDFreactor's proprietary JavaScript API.

Properties
￭ exports <?>

Data that will be made available to the outside integration API. See Exporting Data From JavaScript (p. 86)

￭ layout <Layout>

Proprietary layout information.

￭ pdf <PDF>

Runtime PDFreactor API

Methods
￭

Terminates the current PDF conversion at the next possible moment, causing PDFreactor to throw an appropriate exception with
a message equal to the parameter of this method.

Parameters:
message <String>

The exception message.

ro.layout

PDFreactor allows JavaScript access to some layout information via the proprietary object ro.layout.

Methods
￭

Returns a PageDescription for the page with the given index. The first page has the index 0.

Parameters:
index <Number>

The page index.

￭
Returns an array of BoxDescription objects for the given element. Note that one element can have several boxes (e.g. when a
paragraph is spread over multiple pages).

Parameters:
element <Element>

The DOM element.

terminateConversion (message)

<PageDescription> getPageDescription (index)

<BoxDescription> getBoxDescriptions (element)

www.pdfreactor.com

APPENDIX B: JavaScript Objects and Types

201

￭
Returns a string containing the layout text content of the specified element and its descendants. The layout text can differ from
the DOM text content due to processing, including white-space collapsing and the addition of generated content.

Parameters:
element <Element>

The DOM element.

pseudoElement <String>

A string specifying which content to return:

"before" : Retrieves the "before" generated content of the element.

"after" : Retrieves the "after" generated content of the element.

"text" : Retrieves the content of the element, excluding its generated content.

"all" : Retrieves the content of the element.

If omitted "all" will be applied as default.

Both "text" and "all" includes the generated content of all descendants.

￭
Returns a string containing the content of the page margin box of the specified page.

Parameters:
pageIndex <Number>

The page of the page margin box. The first page has the index 0.

marginBox <String>

A string specifying the page margin box, eg. "top-left" , see Page Header & Footer (p. 124).

Properties
￭ numberOfPages <Number>

Returns the current total number of pages of the document.

ro.pdf

It is possible to use certain PDF-specific parts of the PDFreactor API during runtime via the proprietary object ro.pdf.

Properties
￭ addAttachments <Boolean>

Enables or disables attachments specified in style sheets.

￭ addComments <Boolean>

Enables or disables comments in the PDF document.

￭ addOverprint <Boolean>

Enables or disables overprinting.

￭ addPreviewImages <Boolean>

Enables or disables embedding of image previews per page in the PDF document.

￭ addTags <Boolean>

Enables or disables tagging of the PDF document.

￭ allowAnnotations <Boolean>

Enables or disables the 'annotations' restriction in the PDF document.

￭ allowAssembly <Boolean>

Enables or disables the 'assembly' restriction in the PDF document.

<String> getContent (element, pseudoElementoptional)

<String> getContent (pageIndex, marginBox)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX B: JavaScript Objects and Types

202

￭ allowCopy <Boolean>

Enables or disables the 'copy' restriction in the PDF document.

￭ allowDegradedPrinting <Boolean>

Enables or disables the 'degraded printing' restriction in the PDF document.

￭ allowFillIn <Boolean>

Enables or disables the 'fill in' restriction in the PDF document.

￭ allowModifyContents <Boolean>

Enables or disables the 'modify contents' restriction in the PDF document.

￭ allowPrinting <Boolean>

Enables or disables the 'printing' restriction in the PDF document.

￭ allowScreenReaders <Boolean>

Enables or disables the 'screen readers' restriction in the PDF document.

￭ attachments <Array<Attachment>>

Adds a file attachment to PDF document. All attachments that have been set previously in the PDFreactor integration
are included as attachments with binary content which will be base64-encoded.

￭ author <String>

Sets the value of the author field of the PDF document.

￭ bookletMode <BookletMode>

Convenience method to set pages-per-sheet properties and page order in one step to create a booklet.

￭ creator <String>

Sets the value of creator field of the PDF document.

￭ customDocumentProperties <Array<KeyValuePair>>

Adds custom properties to the PDF document. An existing property of the same name will be replaced.

￭ disableBookmarks <Boolean>

Disables bookmarks in the PDF document.

￭ disableLinks <Boolean>

Disables links in the PDF document.

￭ encryptionSettings <EncryptionSettings>

A type containing settings related to PDF encryption.

￭ keywords <String>

Sets the value of the keywords field of the PDF document.

￭ ownerPassword <Boolean>

Sets the owner password of the PDF document.

www.pdfreactor.com

B.1 Objects

203

￭ pageOrder <String>

Sets the page order of the direct result of the conversion.

If the merge mode is set to ARRANGE (see Merging PDFs (p. 104)), this property is also used to specify the position
of inserted pages from an existing PDF.

A description of the syntax can be found in the Page Order (p. 157) section.

Additionally, the pageOrder constants can be used:

"BOOKLET" : Page order mode to arrange all pages in booklet order.

"BOOKLET_RTL" : Page order mode to arrange all pages in right-to-left booklet order.

"EVEN" : Page order mode to keep even pages only.

"ODD" : Page order mode to keep odd pages only.

"REVERSE" : Page order mode to reverse the page order.

￭ pagesPerSheetProperties <PagesPerSheetProperties>

Sets the properties of a sheet on which multiple pages are being arranged.

If cols or rows is less than 1, no pages-per-sheet processing is done. This is the case by default.

￭ pdfScriptActions <Array<PdfScriptAction>>

Sets a pair of trigger event and PDF script. The script is triggered on the specified event.

A PDF script is JavaScript that is executed by a PDF viewer (e.g. Adobe Reader). Note that most viewers do not
support this feature.

￭ printDialogPrompt <Boolean>

Enables or disables a print dialog to be shown upon opening the generated PDF document by a PDF viewer.

￭ subject <String>

Sets the value of the subject field of the PDF document.

￭ title <String>

Sets the value of the title field of the PDF document.

￭ userPassword <String>

Sets the user password of the PDF document.

B.2 Proprietary Types

BoxDescription

Describes the position and dimensions of the rectangles of a box as well as some further information. The rectangles are
described by using DOMRect.

Properties
￭ pageIndex <Number>

The index of the page of this box. The first page has the index 0.

￭ pageLeft <Boolean>

Whether the page of this box is on the left.

￭ pageDescription <PageDescription>

The PageDescription of the page of this box. It contains the data of the page from the moment when this
BoxDescription was created.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX B: JavaScript Objects and Types

204

￭ lineDescriptions <Array<LineDescription>>

Returns an array of LineDescription s for this box if the box contains text directly.

￭ generatedContentDescriptions <Object<String, Array<BoxDescription>>>

Returns an object providing access to BoxDescription arrays for the generated content via type name strings.
Available generated content type names are "before" and "after" (for normal HTML elements) and
"content" (for page margin boxes). Please note that generated content of inline elements is not yet accessible in

this way.

￭ columnIndex <Number>

For boxes inside a multi-column layout (p. 140) this returns the index of the column the box is in. Otherwise it returns
-1. The index starts at 0 for the first column of the multi-column container element. It increases by one for each
further column or column-span and is not reset on new pages or by column spans.

￭ columnIndexLocal <Number>

For boxes inside a multi-column layout (p. 140) this returns the local index of the column the box is in. Otherwise it
returns -1. The local index starts at 0 for the first column of the multi-column container element. It increases by one
for each further column and is reset to 0 on new pages as well as on and after column spans.

￭ regionIndex <Number>

For boxes inside a Region (p. 144) this returns the index of that region. Otherwise it returns -1. The index starts at 0
for the first region in its chain. It increases by one for each further region in the same chain and is not reset on new
pages.

￭ regionIndexLocal <Number>

For boxes inside a Region (p. 144) this returns the local index of that region. Otherwise it returns -1. The local index
starts at 0 for the first region in its chain. It increases by one for each further region in the same chain and is reset to
0 on new pages.

Methods
￭

Returns a DOMRect describing the margin rectangle. The point of origin is the upper left corner of the page content rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the border rectangle. The point of origin is the upper left corner of the page content rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the padding rectangle. The point of origin is the upper left corner of the page content rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the content rectangle. The point of origin is the upper left corner of the page content rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

<DOMRect> getMarginRect (unitoptional)

<DOMRect> getBorderRect (unitoptional)

<DOMRect> getPaddingRect (unitoptional)

<DOMRect> getContentRect (unitoptional)

www.pdfreactor.com

B.2 Proprietary Types

205

￭
Returns a DOMRect describing the margin rectangle. The point of origin is the upper left corner of the page rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the border rectangle. The point of origin is the upper left corner of the page rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the padding rectangle. The point of origin is the upper left corner of the page rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the content rectangle. The point of origin is the upper left corner of the page rectangle.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the union of the content rectangles of the LineDescriptions contained in this box, i.e. the
bounding rectangle of all text content of the box. The coordinates are relative to the box contaning this lines.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

PageDescription

Describes the dimensions of a page and its rectangles as well as some further information. The rectangles are described
by using DOMRects.

Properties
￭ pageIndex <Number>

The index of this page. The first page has the index 0.

￭ pageLeft <Boolean>

Whether this page is on the left.

￭ pageName <String>

The name of this page, if it is a named page (p. 116) and an empty string otherwise.

￭ pageGroups <Array<String>>

An array containing all names of this page or an empty array if there are none.

￭ range <Range>

The DOM Range of the content of this page. The start- and endContainer are the most deeply nested nodes at the
respective page breaks. Returns null if the page is empty.

<DOMRect> getMarginRectInPage (unitoptional)

<DOMRect> getBorderRectInPage (unitoptional)

<DOMRect> getPaddingRectInPage (unitoptional)

<DOMRect> getContentRectInPage (unitoptional)

<DOMRect> getBoundingLineContentRect (unitoptional)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX B: JavaScript Objects and Types

206

￭ rangeShallow <Range>

The DOM Range of the content of this page. The start- and endContainer are the least deeply nested nodes at the
respective page breaks. Returns null if the page is empty.

￭ marginBoxDescriptions <Object<String, BoxDescription>>

Returns an object providing access to BoxDescription s for the page margin boxes via margin box name strings
like "top-left" . The BoxDescriptions for the content of a margin box are available via the ' content ' key of its
generatedContentDescriptions object.

Methods
￭

Returns a DOMRect describing the media box of the page.
The position is relative to the media/trim rectangle, so both values are negative or 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the bleed box of the page.
The position is relative to the media/trim rectangle, so both values are negative or 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the trim box of the page. This is a synonym for getMarginRect and matches the page size.
The position is relative to the media/trim rectangle itself, so both values are always 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the margin rectangle of the page. This is a synonym for getTrimRect and matches the page size.
The position is relative to the media/trim rectangle itself, so both values are always 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the border rectangle of the page.
The position is relative to the media/trim rectangle, so both values are positive or 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the padding rectangle of the page.
The position is relative to the media/trim rectangle, so both values are positive or 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

<DOMRect> getMediaRect (unitoptional)

<DOMRect> getBleedRect (unitoptional)

<DOMRect> getTrimRect (unitoptional)

<DOMRect> getMarginRect (unitoptional)

<DOMRect> getBorderRect (unitoptional)

<DOMRect> getPaddingRect (unitoptional)

www.pdfreactor.com

B.2 Proprietary Types

207

￭
Returns a DOMRect describing the content rectangle of the page.
The position is relative to the media/trim rectangle, so both values are positive or 0.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the crop box of the page or null if none is set.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the art box of the page or null if none is set.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

LineDescription

Contains information about a line of text. It can be retrieved from a BoxDescription.

Properties
￭ range <Range>

The DOM Range from the beginning to the end of the text of the line or null for empty lines.

Methods
￭

Returns the vertical distance between the baseline position of the line and the top of the content rectangle of the box containing
the line.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

￭
Returns a DOMRect describing the content rectangle of the line, specifically the part of the line actually containing text. The
coordinates are relative to the box contaning this line.

Parameters:
unit <String>

The desired length unit in which the dimensions and coordinates will be returned. (defaults to "px")

Attachment

A JavaScript object containing data for attachments (p. 203).

Properties
￭ data <Blob|TypedArray|ArrayBuffer|String>

The content of the attachment. If it is a string the binary property specifies whether to treat it as UTF-8 or Base64.
May be omitted.

<DOMRect> getContentRect (unitoptional)

<DOMRect> getCropRect (unitoptional)

<DOMRect> getArtRect (unitoptional)

<Number> getBaselinePosition (unitoptional)

<DOMRect> getContentRect (unitoptional)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX B: JavaScript Objects and Types

208

￭ url <String>

If data is not specified, the attachment will be retrieved from this URL. If this is "#" the input document URL is used
instead.

￭ name <String>

The file name associated with the attachment. It is recommended to specify the correct file extension. If this is
omitted the name is derived from the URL.

￭ description <String>

The description of the attachment. If this is omitted the name is used.

￭ binary <Boolean>

This property indicates whether the data property, when it contains a string, is decoded as Base64 binary data or
UTF-8 text. If omitted it is treated as false , meaning that string content is considered UTF-8 text.

BookletMode

A JavaScript object containing data for bookletMode (p. 203).

Properties
￭ sheetSize <String>

The size of the sheet as CSS value, e.g. "A3", "letter landscape", "15in 20in", "20cm 30cm".

￭ sheetMargin <String>

The sheet size as CSS size, e.g. "A4", "letter landscape", "15in 20in", "20cm 30cm".

￭ rtl <Boolean>

Whether or not the reading order of the booklet should be right-to-left.

EncryptionSettings

A JavaScript object containing data for encryptionSettings (p. 203).

Properties
￭ type <String>

The encryption type to be used. The default is "NONE" . Value is one of the following constants:

"NONE" : Indicates that the document will not be encrypted. If encryption is disabled, then no user password or
owner password can be used.

"RC_40" : Indicates that the document will be encrypted using RC4 40 bit encryption.

"RC_128" : Indicates that the document will be encrypted using RC4 128 bit encryption.

"AES_128" : Indicates that the document will be encrypted using AES 128 bit encryption.

"AES_256" : Indicates that the document will be encrypted using AES 256 bit encryption.

￭ ownerPassword <String>

Sets the owner password of the PDF document.

￭ userPassword <String>

Sets the user password of the PDF document.

￭ setAllowAnnotations <Boolean>

Enables or disables the 'annotations' restriction in the PDF document. The default value is false .

www.pdfreactor.com

B.2 Proprietary Types

209

￭ setAllowAssembly <Boolean>

Enables or disables the 'assembly' restriction in the PDF document. The default value is false .

￭ setAllowCopy <Boolean>

Enables or disables the 'copy' restriction in the PDF document. The default value is false .

￭ setAllowDegradedPrinting <Boolean>

Enables or disables the 'degraded printing' restriction in the PDF document. The default value is false .

￭ setAllowFillIn <Boolean>

Enables or disables the 'fill in' restriction in the PDF document. The default value is false .

￭ setAllowModifyContents <Boolean>

Enables or disables the 'modify contents' restriction in the PDF document. The default value is false .

￭ setAllowPrinting <Boolean>

Enables or disables the 'printing' restriction in the PDF document. The default value is false .

￭ setAllowScreenReaders <Boolean>

Enables or disables the 'screen readers' restriction in the PDF document. The default value is false .

KeyValuePair

A JavaScript object containing data for customDocumentProperties (p. 203).

Properties
￭ key <String>

The key.

￭ value <String>

The value.

PagesPerSheetProperties

A JavaScript object containing data for pagesPerSheetProperties (p. 204).

Properties
￭ cols <Number>

The number of columns per sheet.

￭ rows <Number>

The number of rows per sheet.

￭ sheetSize <String>

The sheet size as CSS size, e.g. "A4", "letter landscape", "15in 20in", "20cm 30cm".

￭ sheetMargin <String>

The sheet margin as CSS margin, e.g. "1in", "1cm 1.5cm", "10mm 20mm 10mm 30mm". null is interpreted as
0mm.

￭ spacing <String>

The horizontal and vertical space between pages on a sheet as CSS value, for example "0.1in" or "5mm 2mm". null
is interpreted as "0mm" .

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX B: JavaScript Objects and Types

210

￭ direction <String>

The direction in which the pages are ordered on a sheet. Value is one of the following constants:

"DOWN_LEFT" : Arranges the pages on a sheet from top to bottom and right to left.

"DOWN_RIGHT" : Arranges the pages on a sheet from top to bottom and left to right.

"LEFT_DOWN" : Arranges the pages on a sheet from right to left and top to bottom.

"LEFT_UP" : Arranges the pages on a sheet from right to left and bottom to top.

"RIGHT_DOWN" : Arranges the pages on a sheet from left to right and top to bottom.

"RIGHT_UP" : Arranges the pages on a sheet from left to right and bottom to top.

"UP_LEFT" : Arranges the pages on a sheet from bottom to top and right to left.

"UP_RIGHT" : Arranges the pages on a sheet from bottom to top and left to right.

PdfScriptAction

A JavaScript object containing data for pdfScriptActions (p. 204).

Properties
￭ triggerEvent <String>

The event on which the script is executed. Value is one of the following constants:

"AFTER_PRINT" : This event is triggered after the PDF has been printed by the viewer application.

"AFTER_SAVE" : This event is triggered after the PDF has been saved by the viewer application.

"BEFORE_PRINT" : This event is triggered before the PDF is printed by the viewer application.

"BEFORE_SAVE" : This event is triggered before the PDF is saved by the viewer application.

"CLOSE" : This event is triggered when the PDF is closed by the viewer application.

"OPEN" : This event is triggered when the PDF is opened in the viewer application.

￭ script <String>

The script source that should be executed.

www.pdfreactor.com

B.2 Proprietary Types

211

APPENDIX C: PDFREACTOR WEB
SERVICE SERVER CONFIGURATION
The PDFreactor Web Service server can be configured by using the following server parameters. For
additional information, please refer to chapter Server Parameters (p. 35).

The property "type" indicates with data type is used for the parameter. Some parameters also have a "unit"
which is the unit the server parameter refers to. It is only mentioned for information purposes.

adminKey

This parameter specifies a key for privileged access to the service.

￭ See: Enabling Administrative Access (p. 59)

￭ Type: String

adminKeyPath

Similar to adminKey (p. 212), but specifies the path to a file containing the admin key. If the path of this
parameter indicates a directory, the contents of the file "adminkey.txt" are used, if present within the
directory.

￭ See: Enabling Administrative Access (p. 59)

￭ Type: Path

apiKeys

This parameter specifies a comma separated list of strings that are used as API keys.

￭ See: Restricting Service Access (p. 58)

￭ Type: List<String>

apiKeysPath

Similar to apiKeys (p. 212), but instead of a comma separated list it specifies the path to a file
containing a JSON object with API keys as keys and a description as value. If the path of this
parameter indicates a directory, the contents of the file "apikeys.json" are used, if present within the
directory.

￭ See: Restricting Service Access (p. 58)

￭ Type: Path

assetPackageFiles

This parameter limits the maximum number of files that an asset package may contain. A value of 0 or
a negative value indicates that there is no file limit. The default value is 1000.

￭ Type: Integer ￭ Unit: Amount

assetPackageMaxSize

Limits the maximum size of the asset package (in bytes). A value of 0 or a negative value indicates
that there is no size limit. By default, no maximum size is configured.

￭ Type: Long ￭ Unit: Bytes

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX C: PDFreactor Web Service Server Configuration

212

bufferSyncResult

When enabled, the service first writes the binary result of synchronous conversions to a temporary file
on the server before sending it with the response. This might cause longer request times to the
service, but exceptions that occur while the result data is written (such as timeouts and validation
errors) can now be reliably relayed to the client. Without buffering, the client might receive corrupt data
when such exceptions occur.

￭ Type: Boolean

callbackMaxTimeout

Callback timeouts with a negative or zero value are treated as an infinite timeout. If infinite timeouts
are undesirable for your server, you can limit it to this value (in milliseconds). By default, no maximum
timeout is configured.

￭ Type: Integer ￭ Unit: Milliseconds

callbackTimeout

When clients specify callbacks without a timeout, this value will be used as a default timeout (in
milliseconds) for connections to the callback URL. The default value is 30000 (30 seconds).

￭ Type: Integer ￭ Unit: Milliseconds

cleanupInterval

This parameter specifies the interval (in days) at which the PDFreactor Web Service deletes
asynchronous conversion results that have not been retrieved. The default value is 5.

￭ Type: Integer ￭ Unit: Days

configPath

The location of the server configuration file.

￭ Type: Path

conversionCacheSize

This parameter specifies the amount of conversions that are kept in memory (only their metadata,
without the document). Otherwise they have to be reloaded from the file system.

￭ Type: Integer ￭ Unit: Amount

conversionTimeout

Specifies a timeout in seconds after which conversions automatically terminate. Specifying the value
"0" means that there is no timeout. By default, no timeout is configured.

￭ Type: Integer ￭ Unit: Seconds

criticalEvents

Puts the server in a critical state if certain events occur. You can listen for the following events:

 async_unavailable can occur during startup when the service determines that it can't perform
asynchronous conversions.

 no_licensekey can occur during startup when the service has no license key configured, cannot
locate one on the file system, or the configured license key is invalid.

￭ Type: Enum

￭ Values: async_unavailable | no_licensekey

debugLocalDir

This specifies the directory where debug files will be dumped by PDFreactor in case debug mode is
enabled and no converted document could be created.

￭ Type: Path

www.pdfreactor.com

APPENDIX C: PDFreactor Web Service Server Configuration

213

disableDocTemp
If set to true, the Web Service will not use a temp folder. This also means that asynchronous
conversions are not available. Synchronous conversions will be done in-memory, so make sure that
the Web Service has sufficient amounts of memory available.

￭ Type: Boolean

disableFontCache
If set to true, the Web Service will not use a file-based font cache. Generally, this is not
recommended since the font cache will then have to be created for every conversion which is likely to
have a significant performance impact. The default value is false.

￭ Type: Boolean

disableFontRegistration
If set to true, font registration is disabled and any existing font cache will be ignored and the font
directories will be scanned for font information. The default value is false.

￭ Type: Boolean

disableSystemFonts
If set to true, PDFreactor will neither scan for nor use system fonts that are installed on the server.
Only fonts specified via CSS and via the server parameter fontDirs as well as PDFreactor internal
fonts will be used.

￭ Type: Boolean

docTempDir

This parameter specifies the location of the Web Service's temporary folder which is used to store
asynchronously converted documents. The pre-configured location is the "pdfreactor/doctemp"
directory in the "PDFreactor/jetty-base-pdfreactor" directory.

￭ Type: Path

docTempRetentionPeriod

Asynchronous conversions create temporary files on the server, which are automatically deleted when
they are read once. If results of asynchronous conversions are not accessed, these files remain on the
server and are deleted after a certain amount of days equal to this parameter. The default value is 5
(days). A negative value means that abandoned temporary files will never be deleted.

￭ Type: Integer ￭ Unit: Days

docTempStructure

This parameter configures the structure of the directory where PDFreactor stores temporary
documents. If set to flat (the default value), all documents are placed in the same directory. If set to
datetime, temporary documents are placed in subfolders representing the date and hour when the
conversion started. A flat structure is recommended when using a shared temporary document storage
directory.

￭ Type: Enum

￭ Values: datetime | flat

fontCacheDir

This specifies the directory of the font cache, which will be created by PDFreactor. If no path is
specified, the font cache will be created in "PDFreactor/jetty-base-pdfreactor/pdfreactor/fontcache".

￭ Type: Path

fontDirs

This parameter takes a colon or semicolon separated list of directories that PDFreactor should scan
for fonts.

￭ Type: List<Path>

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX C: PDFreactor Web Service Server Configuration

214

httpCacheEnabled

This parameter indicates that a HTTP cache is to be used.

￭ Type: Boolean

ignoreClientPriority
If set to true, the Web Service will ignore any priority specified via the priority property in the
client's Configuration object.

￭ Type: Boolean

jsonMaxStringLength

This parameter specifies the maximum string length of any configuration property when using the
JSON format. Should a string exceed this length, the configuration will be rejected. The default value is
20,000,000.

￭ Type: Integer

licenseKeyPath

Specifies a file system path, either directly to the license key file or to a directory where the license key
file is located.

￭ Type: Path

licenseKeyUrl

Specifies a URL where the license key file is located.

￭ Type: URL

networkSettings.authenticationCredentials

This parameter indicates a URL or file system path to text file containing authentication credentials.
The file must contain a JSON array of HttpCredentials objects in JSON format.

￭ Type: URL

networkSettings.connectTimeout

Specifies the connect timeout of the network settings.

￭ Type: Integer ￭ Unit: Milliseconds

networkSettings.cookiePolicy

Specifies the cookie policy of the network settings.

￭ Type: Enum

￭ Values: disabled | relaxed | strict

networkSettings.cookies

This parameter indicates a URL or file system path to text file containing cookies. The file must contain
a JSON array of Cookie objects in JSON format.

￭ Type: URL

networkSettings.readTimeout

Specifies the read timeout of the network settings.

￭ Type: Integer ￭ Unit: Milliseconds

networkSettings.requestHeaders

This parameter indicates a URL or file system path to text file containing request headers. The file
must contain a JSON array of KeyValuePair objects in JSON format.

￭ Type: URL

www.pdfreactor.com

APPENDIX C: PDFreactor Web Service Server Configuration

215

overrideConfig

A URL or path to a file containing a server-side configuration which is used to override any properties
in the configuration send by clients. The file must be a Configuration object in JSON format.

￭ Type: URL

overrideConfigMergeMode
The merge mode used when specifying an overrideConfig. The default mode is shallow, which
means that the overrideConfig and the client config are shallow-merged, i.e. top-level properties of the
overrideConfig completely override those in the client config. When using the mode deep, the two
configs are deep-merged.

￭ Type: Enum

￭ Values: deep | shallow

resourceCacheDirectory

This parameter indicates the file system location of the resource cache directory.

￭ Type: Path

resourceCacheMaxEntries

This parameter indicates the maximum amount of entries that are allowed in the resource cache.

￭ Type: Integer ￭ Unit: Amount

resourceCacheMaxObjectSize

This parameter indicates the maximum size of an object that can be cached in the resource cache.

￭ Type: Long ￭ Unit: Bytes

securitySettings.allowAuthorApiOverrides

This parameter specifies whether to allow authors to override API settings, e.g. by using document
JavaScript.

￭ Type: Boolean

securitySettings.allowExternalXmlParserResources

This parameter specifies whether the XML parser will process external XML resources during parsing,
e.g. DTDs, entities, XInlcudes. This does not affect HTML5 document processing.

￭ Type: Boolean

securitySettings.allowNonLocalFileUrls

This parameter specifies whether to allow file URLs to non-local hosts. If not enabled, PDFreactor
considers all file URLs invalid that have a non-empty authority component other than exactly
"localhost".

￭ Type: Boolean

securitySettings.allowRedirects

This parameter specifies whether to allow automatic URL redirects when PDFreactor receives
appropriate status codes.

￭ Type: Boolean

securitySettings.connectionRules

A URL or path to a file containing a list of rules that PDFreactor evaluates and then either denies or
allows connections to a particular resource. The file must be a JSON array of ConnectionRule
objects in JSON format.

￭ Type: URL

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX C: PDFreactor Web Service Server Configuration

216

securitySettings.defaults.allowAddresses

This parameter specifies a list of address types to where PDFreactor is allowed to connect.

￭ Type: List<Enum>

￭ Values: link_local | local | private | public

securitySettings.defaults.allowFileSystemAccess

This parameter specified whether to allow document resources such as CSS or JavaScript file system
access.

￭ Type: Boolean

securitySettings.defaults.allowProtocols

This parameter specifies a list of allowed URL protocols. URLs with protocols not in this list will be
blocked. Note that "file" protocols are handled by securitySettings.defaults.allowFileSystemAccess
(p. 217) instead.

￭ Type: List<String>

securitySettings.defaults.allowSameBasePath

This parameter specifies whether to allow loading of document resources that have the same base
path as the document.

￭ Type: Boolean

securitySettings.hideVersionInfo

Specifies whether PDFreactor will include version information in the PDF metadata or in response
headers.

￭ Type: Boolean

securitySettings.trustAllConnectionCertificates

Specifies whether PDFreactor should automatically trust all SSL certificates when connecting to a
server via HTTPS.

￭ Type: Boolean

securitySettings.untrustedApi

Specifies whether the PDFreactor configuration object is considered an untrusted context for the
purpose of security. If it is a trusted context, URLs that are specified in the configuration object are not
vetted against the security settings and are always allowed. If it is not trusted, the same security
settings that are used for document resources apply to all configuration resources (including the
document) as well.

￭ Type: Boolean

serverLogLevel

This parameter configures the log level of the server's log. The following levels are available:
 fatal (least verbose)
 error
 warn
 info
 debug
 trace (most verbose)

The level off disables server logging. The default value is info.

￭ Type: Enum

￭ Values: debug | error | fatal | info | off | trace | warn

www.pdfreactor.com

APPENDIX C: PDFreactor Web Service Server Configuration

217

serverLogMessagePrefixFormat

The format of the prefix to use for log messages that are logged in the server log. The format consists
of several placeholder tokens, each wrapped in double curly braces, i.e. {{xxx}} . The following
tokens are available and are filled automatically:

 {{app.id}} - The ID of the application. Will always be replaced with PRWS.
 {{app.name}} - The name of the application. Will always be replaced with PDFreactor Web

Service.
 {{service.id}} - The unique ID of the service instance.
 {{service.name}} - The name of the service as specified in the serverName (p. 218) parameter.

Defaults to app.name if not specified.
 {{task.id}} - The ID of the conversion that produced the log message. If the application

produced the log message instead of a conversion, the token is replaced replaced by the value of
service.id.

 {{task.id?}} - Same as task.id but is replaced by an empty string if the log message is not
produced by a conversion.

 {{task.name}} - The name of conversion that produced the log message, as specified in the
'conversionName' configuration parameter. If the application produced the log message instead of
a conversion, the token is replaced by the value of service.name.

 {{task.name?}} - Same as task.name but is replaced by an empty string if the log message is
not produced by a conversion.

 {{context}} - The context, i.e. if the log message was produced from a conversion or the
application. Replaced by 'Task' if it was a conversion, and app.name otherwise.

 {{context.id}} - Same as context, but replaced by service.id if the log message was not
produced by a conversion.

 {{context.name}} - Same as context, but replaced by service.name if the log message was
not produced by a conversion.

The default log format is: {{context}} {{task.id}}

Depending on the use case, this may make log messages easier to identify.

￭ Type: String

serverLogMode
This parameter configures the log mode of the server. If set to bulk (the default value), the entire log
output of a PDF conversion is dumped after the conversion is finished. This can also be set to live
which outputs log entries directly. However if there are multiple conversions in parallel, log entries
from other conversions may be written out at the same time, so there is no guarantee that you will
receive a coherent log of a single conversion (contrary to bulk). The mode off disables the server-
side logging of all conversions.

￭ Type: Enum

￭ Values: bulk | live | off

serverName

The name of the service or server. Can be used to identify the service in the logs.

￭ Type: String

shutdownIfCritical

This parameter automatically shuts down the Java VM and thus the PDFreactor Web Service if its
state is critical. The numeric value represents the exit code that is emitted when the service shuts
down. It is recommended to use a positive non-zero exit code value.

￭ Type: Integer

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX C: PDFreactor Web Service Server Configuration

218

systemdLogLevel

This parameter configures Systemd logging. If this parameter is configured, log messages will be
logged to the Systemd log in addition to the server log file. Available values are SEVERE, WARNING,
CONFIG, and INFO. Systemd logging is only supported for Linux system that support Systemd. You
can access PDFreactor logs through their identifier, e.g. journalctl -t pdfreactor

￭ Type: Enum

￭ Values: config | info | severe | warning

threadPoolSize

This parameter determines the number of parallel conversions that can be performed by the
PDFreactor Web Service. Please note that while there is no maximum value for this, only a thread pool
size that is lower as or equal to the system's maximum amount of threads will increase performance
when converting documents in parallel. The default value is calculated from the system's number of
processors.

￭ Type: Integer ￭ Unit: Amount

www.pdfreactor.com

APPENDIX C: PDFreactor Web Service Server Configuration

219

APPENDIX D: SUPPORTED
BARCODE TYPES AND PROPERTIES
PDFreactor supports the following barcode symbologies, each handling some of the -ro-barcode-* CSS
properties differently.

Note

These -ro-barcode-* properties apply to all barcode types:

 -ro-barcode-type
 -ro-barcode-content
 -ro-barcode-color

These apply to all barcode types with human readable text:

 -ro-barcode-human-readable-position
 -ro-barcode-font-size
 -ro-barcode-font-family

-ro-barcode-encoding applies to all barcode types, however they don't necessarily support all 3 available data
types.

-ro-barcode-size applies to most barcode types. If the property is not explicitly mentioned, it adjusts the bar
height.

Please refer to the CSS documentation for more information.

Important

Some barcode symbologies impose additional restrictions on the input data besides limiting the allowed characters.

Note

If the -ro-barcode-type property is mentioned below, the entry always refers to its optional last argument.

Example 137: Enabling the optional check digit of a interleaved Code 2 of 5 using -ro-barcode-type

.barcode {
 -ro-replacedelement: barcode;
 -ro-barcode-type: code2of5 interleaved enabled;
 -ro-barcode-content: "1234567890";
}

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

220

QR Code
The QR Code bar code symbology according to ISO/IEC 18004:2015.

Identifier: qrcode

Default Subtype: none

Allowed Characters: The Latin-1 set and Kanji characters which are
members of the Shift-JIS encoding scheme.

Supported Data Types: eci , hibc , gs1

Supported Subtypes

Identifier Description

none A regular QR code.

swiss A specialized type of QR Code symbol used for QR-bill in Switzerland. It is mostly a spec-
compliant QR Code, but it must use error correction level M, it cannot hold more than 997
characters, it must always measure 46x46 mm when printed, data must be encoded as UTF-8
without the use of ECI, and it features a Swiss cross logo in the center of the symbol.

upn A specialized type of QR Code symbol used by the Bank Association of Slovenia for their
Universal Payment Order. It is mostly a spec-compliant QR Code, but it must use error
correction level M, it must use version 15 (size 77x77), it must use ECI 4 (ISO-8859-2). Data is
encoded in byte mode.

-ro-barcode-size

Default Value Possible Values Description

auto 1 - 40 Selects a QR code size, refer to the QR code version table (p. 222) for
more detailed information.

-ro-barcode-ecc-level

Default Value Possible Values Description

auto L, M, Q, H Sets the error correction level.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

221

QR Code Version Table

-ro-barcode-
size

Symbol
Size

1 21 x 21

2 25 x 25

3 29 x 29

4 33 x 33

5 37 x 37

6 41 x 41

7 45 x 45

8 49 x 49

9 53 x 53

10 57 x 57

11 61 x 61

12 65 x 65

13 69 x 69

14 73 x 73

-ro-barcode-
size

Symbol
Size

15 77 x 77

16 81 x 81

17 85 x 85

18 89 x 89

19 93 x 93

20 97 x 97

21 101 x 101

22 105 x 105

23 109 x 109

24 113 x 113

25 117 x 117

26 121 x 121

27 125 x 125

-ro-barcode-
size

Symbol
Size

28 129 x 129

29 133 x 133

30 137 x 137

31 141 x 141

32 145 x 145

33 149 x 149

34 153 x 153

35 157 x 157

36 161 x 161

37 165 x 165

38 169 x 169

39 173 x 173

40 177 x 177

Code 128
The Code 128 barcode symbology as defined in ISO/IEC 15417:2007.

Identifier: code128

Allowed Characters: 8-bit ISO 8859-1 (Latin-1) characters.

Supported Data Types: eci , hibc , gs1

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

222

-ro-barcode-type

Default Value Possible Values Description

code-set-abc code-set-a,

code-set-b,

code-set-c,

code-set-ab,

code-set-abc

Determines which code sets are used by this barcode:

A can encode ASCII values 0-95, as well as FNC1, FNC2, FNC3 and FNC4.

B can encode ASCII values 32-127, as well as FNC1, FNC2, FNC3 and
FNC4.

C can encode pairs of numbers, as well as FNC1.

AB allows A and B code sets.

ABC allows all three code sets.

-ro-barcode-reader-initialization

Default Value Possible Values Description

disabled enabled, disabled Defines whether reader initialization instructions should be
added to the barcode.

Code 32
Code 32, also known as Italian Pharmacode.

Identifier: code32

Allowed Characters: 0-9

Supported Data Types: eci , hibc

Code 49
Code 49 according to ANSI/AIM-BC6-2000.

Identifier: code49

Allowed Characters: ASCII

Supported Data Types: eci , hibc , gs1

Code 11
Identifier: code11

Allowed Characters: 0-9 and dash (-).

Supported Data Types: eci , hibc

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

223

-ro-barcode-human-readable-affix

Default
Value

Possible Values Description

none One or two strings
with a length of 1.

Determines the affix characters at the beginning and the end of the
human readable text. The first argument sets the prefix, while the
second sets the suffix. If the second is omitted, the first argument
sets both.

-ro-barcode-type

Default Value Possible Values Description

2 1 or 2 Sets the number of checkdigits to be calculated.

Code 93
Identifier: code93

Allowed Characters: ASCII text.

Supported Data Types: eci , hibc

-ro-barcode-human-readable-affix

Default
Value

Possible Values Description

none A string with a
length of 1.

Determines the affix characters at the beginning and the end of the
human readable text. When applied to a Code 93 barcode, this affix
sets both the prefix and suffix.

-ro-barcode-type

Default Value Possible Values Description

2 1 or 2 Sets the number of checkdigits to be calculated.

Code16k
Identifier: code16k

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

224

-ro-barcode-reader-initialization

Default Value Possible Values Description

disabled enabled, disabled Defines whether reader initialization instructions should be
added to the barcode.

DPD Code
A linear barcode based on Code 128. Data is expected to be 27 or 28
characters long and use the format
"IPPPPPPPTTTTTTTTTTTTTTSSSCCC", where I is the identification tag
(omitted if this is a "relabel" barcode), P is the destination postal code (7
alphanumerics), T is the tracking number (4 alphanumerics followed by 10
digits), S is the service code (3 digits) and C is the ISO country code for the
destination country (3 digits). A modulo-36 check character is added
automatically to the human-readable text, but not to the data encoded in the
symbol.

Identifier: dpd

Allowed Characters: alphanumeric

PDF417
The PDF417/MicroPDF417 bar code symbologies according to ISO/IEC
15438:2006 and ISO/IEC 24728:2006.

Identifier: pdf417

Default Subtype: normal

Allowed Characters: ASCII

Supported Data Types: eci , hibc

Supported Subtypes

Identifier Description

normal A typical PDF417 barcode.

truncated As opposed to a normal PDF417, its truncated version are missing one data codeword and
the stop bars from each row.

micro A smaller version of PDF417 codes.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

225

-ro-barcode-ecc-level

Default Value Possible Values Description

auto 0-8 Sets the error correction level. Does not apply to MicroPDF417.

-ro-barcode-size

Default
Value

Possible Values Description

auto Columns: 1-30 for (truncated)
PDF417, 1-4 for MicroPDF417.
Rows: 3-90 for (truncated)
PDF417, 4-44 for MicroPDF417.

Sets the number of columns and rows this barcode
should contain. The first value defines the columns, the
second defines the rows.

-ro-barcode-structured-append

Default
Value

Possible
Values

Description

none Positive
integers

Defines a structured series. The first value sets the total number of
barcodes belonging to it, the second value defines the ID of the series,
which consists of 3 digits.

-ro-barcode-structured-append-position

Default Value Possible Values Description

auto Positive integers Defines the position of this barcode within a structured series.

-ro-barcode-reader-initialization

Default Value Possible Values Description

disabled enabled, disabled Defines whether reader initialization instructions should be
added to the barcode.

Australia Post
Identifier: auspost

Supported Data Types: eci , hibc

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

226

Australia Post Reply Paid
Identifier: ausreply

Supported Data Types: eci , hibc

Australia Post Routing
Identifier: ausroute

Supported Data Types: eci , hibc

Australia Post Redirect
Identifier: ausredirect

Supported Data Types: eci , hibc

Code 3 of 9
The code 3 of 9 bar code symbology according to ISO/IEC 16388:2007.

Identifier: code39

Default Subtype: normal

Allowed Characters: 0-9, A-Z, dash (-), full stop (.), space, dollar ($), slash
(/), plus (+) and percent (%). ASCII for Code 3 of 9 extended.

Supported Data Types: eci , hibc

Supported Subtypes

Identifier Description

normal A standard Code 3 of 9.

extended An extended version which is able to encode all ASCII characters.

-ro-barcode-checkdigit-mode

Default Value Possible Values Description

none mod43, none Sets whether checkdigits should be calculated.

MSI Plessey
Identifier: msiplessey

Allowed Characters: 0-9

Supported Data Types: eci , hibc

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

227

-ro-barcode-checkdigit-mode

Default Value Possible Values Description

none none, mod10, mod11, mod1010, mod1011 Sets how checkdigits should be
calculated.

UK Plessey
Identifier: plessey

Allowed Characters: 0-9, A-F

Supported Data Types: eci

-ro-barcode-checkdigit-mode

Default Value Possible Values Description

none none, crc8 Sets whether checkdigits should be calculated.

Channel Code
Channel Code according to ANSI/AIM BC12-1998.

Identifier: channelcode

Allowed Characters: 0-9

Supported Data Types: eci , hibc

-ro-barcode-type

Default Value Possible Values Description

auto 3 - 8 Sets the preferred amount of channels used to encode the data.

Codabar
Codabar barcode symbology according to BS EN 798:1996.

Also known as NW-7, Monarch, Code 27, Ames Code, USD-4 and ABC
Codabar.

Identifier: codabar

Allowed Characters: 0-9, dash (-), dollar ($), colon (:), slash (/), full stop (.)
and plus (+)

Content must start and end with "A", "B", "C", or "D"

Supported Data Types: eci , hibc

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

228

EAN-8
EAN bar code symbology according to BS EN 797:1996

Identifier: ean-8

Allowed Characters: 0-9

Supported Data Types: eci , hibc

-ro-barcode-type

Default Value Possible Values Description

auto An absolute length. Changes the guard length of the barcode.

EAN-13
EAN bar code symbology according to BS EN 797:1996

Identifier: ean-13

Allowed Characters: 0-9

Supported Data Types: eci , hibc

-ro-barcode-type

Default Value Possible Values Description

auto An absolute length. Changes the guard length of the barcode.

UPC-A
UPC bar code symbology according to BS EN 797:1996.

Identifier: upc-a

Allowed Characters: 0-9

Supported Data Types: eci , hibc

-ro-barcode-type

Default Value Possible Values Description

auto An absolute length. Changes the guard length of the barcode.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

229

UPC-E
UPC bar code symbology according to BS EN 797:1996.

Identifier: upc-e

Allowed Characters: 0-9

Supported Data Types: eci , hibc

-ro-barcode-type

Default Value Possible Values Description

auto An absolute length. Changes the guard length of the barcode.

Ean/UPC Addon
EAN/UPC add-on bar code symbology according to BS EN 797:1996.

Identifier: addon

Allowed Characters: 0-9

Supported Data Types: eci , hibc

Telepen
Also known as Telepen Alpha.

Identifier: telepen

Allowed Characters: ASCII

Default Subtype: normal

Supported Data Types: eci , hibc

Supported Subtypes

Identifier Description

normal Allows all ASCII content.

numeric Only allows numeric content.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

230

GS1 Databar / Databar 14
GS1 DataBar according to ISO/IEC 24724:2011

Identifier: databar

Default Subtype: normal

Allowed Characters: 0-9

Supported Data Types: gs1 , but with an omitted Application Identifer and
check digit. Thus not considered GS1 format data.

Supported Subtypes

Identifier Description

normal Standard linear Databar.

stacked A stacked version, which is smaller that a linear databar, but not omnidirectional.

omnidirectional A stacked omnidirectional Databar.

-ro-barcode-type

Default Value Possible Values Description

auto An absolute length Changes the separator length for stacked and omnidirectional
databars.

GS1 Databar Expanded / Databar 14 Expanded
GS1 DataBar Expanded according to ISO/IEC 24724:2011

Identifier: databar-expanded

Default Subtype: normal

Allowed Characters: 0-9

Supported Data Types: gs1

Supported Subtypes

Identifier Description

normal Standard GS1 Databar Expanded.

stacked A stacked version of the GS1 Databar Expanded.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

231

-ro-barcode-size

Default
Value

Possible Values Description

auto An integer between 1 and 10 to set the
column count, a length to set the bar length
or both.

Sets the bar length and the number of
columns/symbol segments this barcode
should contain.

GS1 Databar Limited
GS1 DataBar Limited according to ISO/IEC 24724:2011

Identifier: databar-limited

Allowed Characters: 0-9

Supported Data Types: gs1 , but with an omitted Application Identifer and
check digit. Thus not considered GS1 format data.

Dutch Post Kix Code
Dutch Post KIX Code as used by Royal Dutch TPG Post (Netherlands).

Identifier: kixcode

Allowed Characters: 0-9, A-Z

Supported Data Types: eci , hibc

Japan Post
The Japanese Postal Code symbology

Identifier: japan-post

Allowed Characters: 0-9, A-Z and the dash (-) character

Supported Data Types: eci , hibc

Royal Mail
Royal Mail 4-State Country Code

Identifier: royal-mail

Allowed Characters: 0-9, A-Z

Supported Data Types: eci , hibc

Korea Post
Identifier: korea-post

Allowed Characters: 0-9

Supported Data Types: eci , hibc

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

232

USPS OneCode (Intelligent Mail)
USPS OneCode (Intelligent Mail Barcode) according to USPS-B-3200F

Identifier: usps-onecode

Allowed Characters: 0-9, dash (-)

Supported Data Types: eci , hibc

USPS Package
USPS Intelligent Mail Package Barcode (IMpb), a linear barcode based on
GS1-128.

Identifier: usps-package

Allowed Characters: 0-9

Supported Data Types: gs1

POSTNET (Postal Numeric Encoding Technique)
The POSTNET (Postal Numeric Encoding Technique) barcode symbology
used by the United States Postal Service.

Identifier: postnet

Default Subtype: normal

Allowed Characters: 0-9

Supported Data Types: eci , hibc

Supported Subtypes

Identifier Description

normal A standard POSTNET code.

planet A Postal Alpha Numeric Encoding Technique (PLANET) barcode.

Pharmazentralnummer (PZN-8)
A Code 39 based symbology used by the pharmaceutical industry in
Germany.

Identifier: pzn8

Allowed Characters: 0-9

Supported Data Types: eci , hibc

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

233

Pharmacode
Identifier: pharmacode

Default Subtype: onetrack

Allowed Characters: 0-9

Supported Data Types: eci , hibc

Supported Subtypes

Identifier Description

onetrack A Pharmacode consisting of one track.

twotrack A Phramacode consisting of two tracks.

Codablock-F
Symbology according to AIM Europe "Uniform Symbology Specification -
Codablock F", 1995.

Identifier: codablockf

Allowed Characters: 8-bit ISO 8859-1 (Latin-1)

Supported Data Types: eci , hibc

Logmars
The LOGMARS (Logistics Applications of Automated Marking and Reading
Symbols) standard used by the US Department of Defense.

Identifier: logmars

Allowed Characters: 0-9, A-Z, dash (-), full stop (.), space, dollar ($), slash
(/), plus (+) and percent (%).

Supported Data Types: eci , hibc

Aztec Runes
Aztec Runes bar code symbology according to ISO/IEC 24778:2008 Annex
A.

Identifier: aztec-runes

Allowed Characters: 0-9

Supported Data Types: eci , hibc

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

234

Aztec Code
Aztec Code bar code symbology According to ISO/IEC 24778:2008.

Identifier: aztec-code

Allowed Characters: 8-bit ISO 8859-1 (Latin-1)

Supported Data Types: eci , hibc , gs1

-ro-barcode-reader-initialization

Default Value Possible Values Description

disabled enabled, disabled Defines whether reader initialization instructions should be
added to the barcode.

-ro-barcode-ecc-level

Default Value Possible Values Description

auto
Value Error Correction Capacity

1 > 10% + 3 codewords

2 > 23% + 3 codewords

3 > 36% + 3 codewords

4 > 50% + 3 codewords

Sets the error correction level.

-ro-barcode-size

Default Value Possible Values Description

auto 1 - 4 for "compact" Aztec
code symbols,
5 - 36 for "full-range" Aztec
code symbols.

Selects a Aztec code size, refer to the Aztec code
version table (p. 236) for more detailed information.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

235

-ro-barcode-structured-append

Default
Value

Possible Values Description

none An integer for the total number
of barcodes, a string for the id.

Defines a structured series. The first value sets the total
number of barcodes belonging to it, the second value
defines the ID of the series.

-ro-barcode-structured-append-position

Default Value Possible Values Description

auto Positive integers. Defines the position of this barcode within a structured series.

Aztec Code Version Table

-ro-barcode-
size

Symbol
Size

1 15 x 15

2 19 x 19

3 23 x 23

4 27 x 27

5 19 x 19

6 23 x 23

7 27 x 27

8 31 x 31

9 37 x 37

10 41 x 41

11 45 x 45

12 49 x 49

-ro-barcode-
size

Symbol
Size

13 53 x 53

14 57 x 57

15 61 x 61

16 67 x 67

17 71 x 71

18 75 x 75

19 79 x 79

20 83 x 83

21 87 x 87

22 91 x 91

23 95 x 95

24 101 x 101

-ro-barcode-
size

Symbol
Size

25 105 x 105

26 109 x 109

27 113 x 113

28 117 x 117

29 121 x 121

30 125 x 125

31 131 x 131

32 135 x 135

33 139 x 139

34 143 x 143

35 147 x 147

36 151 x 151

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

236

Data Matrix
Data Matrix ECC 200 bar code symbology According to ISO/IEC 16022:2006

Identifier: data-matrix

Default Subtype: square

Allowed Characters: ISO/IEC 8859-1 (Latin-1)

Supported Data Types: eci , hibc , gs1

Supported Subtypes

Identifier Description

square A square shaped data matrix.

rectangle A rectangular data matrix

-ro-barcode-reader-initialization

Default Value Possible Values Description

disabled enabled, disabled Defines whether reader initialization instructions should be
added to the barcode.

-ro-barcode-size

Default Value Possible Values Description

auto 1 - 30 Selects a Data Matrix size, refer to the Data Matrix version table
(p. 238) for more detailed information.

-ro-barcode-structured-append

Default
Value

Possible
Values

Description

none Two integers. Defines a structured series. The first value sets the total number of
barcodes belonging to it, the second value defines the ID of the series.

-ro-barcode-structured-append-position

Default Value Possible Values Description

auto Positive integers. Defines the position of this barcode within a structured series.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

237

Data Matrix Version Table

-ro-barcode-
size

Symbol
Size

1 10 x 10

2 12 x 12

3 14 x 14

4 16 x 16

5 18 x 18

6 20 x 20

7 22 x 22

8 24 x 24

9 26 x 26

10 32 x 32

-ro-barcode-
size

Symbol
Size

11 36 x 36

12 40 x 40

13 44 x 44

14 48 x 48

15 52 x 52

16 64 x 64

17 72 x 72

18 80 x 80

19 88 x 88

20 96 x 96

-ro-barcode-
size

Symbol
Size

21 104 x 104

22 120 x 120

23 132 x 132

24 144 x 144

25 8 x 18

26 8 x 32

27 12 x 26

28 12 x 36

29 16 x 36

30 16 x 48

Code One
Identifier: code-one

Allowed Characters: ISO 8859-1 (Latin-1)

Supported Data Types: eci , hibc , gs1

-ro-barcode-size

Default Value Possible Values Description

auto 1-10 Selects a Code One version, refer to the Code One version table
(p. 239) for more detailed information.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

238

Code One Version Table

-ro-barcode-size Version (Size)

1 A: 18 x 16

2 B: 22 x 22

3 C: 32 x 28

4 D: 42 x 40

5 E: 54 x 52

-ro-barcode-size Version (Size)

6 F: 76 x 70

7 G: 98 x 104

8 H: 134 x 148

9 S: ? x 9

10 T: ? x 17

Note

The width of the Code One versions S and T is determined by the amount of encoded data. For version S it is
either 13, 23 or 33, for version T it is either 19, 35 or 51.

Grid Matrix
Grid Matrix bar code symbology according to AIMD014

Identifier: grid-matrix

Allowed Characters: ISO/IEC 8859-1 (Latin-1) and GB-2312

Supported Data Types: eci , hibc

-ro-barcode-reader-initialization

Default Value Possible Values Description

disabled enabled, disabled Defines whether reader initialization instructions should be
added to the barcode.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

239

-ro-barcode-ecc-level

Default Value Possible Values Description

auto
Value Error Correction Capacity

1 ~10%

2 ~20%

3 ~30%

4 ~40%

5 ~50%

Sets the error correction level.

-ro-barcode-size

Default Value Possible Values Description

auto 1 - 13 Selects a Grid Matrix size, refer to the Grid Matrix version table
(p. 240) for more detailed information.

Grid Matrix Version Table

-ro-barcode-size Symbol Size

1 18 x 18

2 30 x 30

3 42 x 42

4 54 x 54

5 66 x 66

6 78 x 78

7 90 x 90

-ro-barcode-size Symbol Size

8 102 x 102

9 114 x 114

10 126 x 126

11 138 x 138

12 150 x 150

13 162 x 162

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

240

Maxicode
MaxiCode barcode symbology according to ISO 16023:2000

Identifier: maxicode

Default Subtype: mode-4

Allowed Characters: ISO 8859-1 (Latin-1)

Supported Data Types: eci , hibc

Note

The size of MaxiCodes is defined as 1 in. × 1 in. (25,4 mm × 25,4 mm). Because of this,
-ro-barcode-symbol-width does not apply to them.

Supported Subtypes

Identifier Description

mode-2 Formatted data containing a structured Carrier Message with a numeric postal code.

mode-3 Formatted data containing a structured Carrier Message with an alphanumeric postal code.

mode-4 Unformatted data with Standard Error Correction.

mode-5 Unformatted data with Enhanced Error Correction.

mode-6 Used for programming hardware devices.

-ro-barcode-structured-append

Default
Value

Possible
Values

Description

none Positive
integers.

Defines a structured series. The first value sets the total number of
barcodes belonging to it. Structured Maxicode series do not have an
ID.

-ro-barcode-structured-append-position

Default Value Possible Values Description

auto Positive integers. Defines the position of this barcode within a structured series.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

241

-ro-barcode-type

Default
Value

Possible Values Description

auto A string whose characters should comform with the
following requirements:

 1-9 - Postal code data consisting of up to 9 digits
(mode 2) or up to 6 alphanumeric characters (mode 3).
The remaining characters should be filled with spaces.

 10-12 - Three-digit country code according to
ISO-3166.

 13-15 - Three digit service code. This depends on your
parcel courier.

Sets the primary data and
should only be used with
Maxicode mode 2 or 3.

Micro QR
Micro QR Code according to ISO/IEC 18004:2006

Identifier: microqr

Allowed Characters: The Latin-1 set and Kanji characters which are
members of the Shift-JIS encoding scheme.

Supported Data Types: eci , hibc

-ro-barcode-size

Default Value Possible Values Description

auto 1 - 4, maps to M1 to M4. Selects a Micro QR code size.

-ro-barcode-ecc-level

Default Value Possible Values Description

auto L, M, Q Sets the error correction level.

Code 2 of 5
The Code 2 of 5 family of barcode standards.

Identifier: code2of5

Default Subtype: matrix

Allowed Characters: 0-9

Supported Data Types: eci , hibc

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

242

Supported Subtypes

Identifier Description

matrix Standard Code 2 of 5 mode, also known as Code 2 of 5 Matrix.

industrial Industrial Code 2 of 5.

iata International Air Transport Agency variation of Code 2 of 5.

data-logic Code 2 of 5 Data Logic.

interleaved Interleaved Code 2 of 5.

itf14 ITF-14, also known as UPC Shipping Container Symbol or Case Code. Requires a 13-
digit numeric input.

dp-leitcode Deutsche Post Leitcode. Requires a 13-digit numerical input.

dp-identcode Deutsche Post Identcode. Requires an 11-digit numerical input.

-ro-barcode-type

Default Value Possible Values Description

disabled enabled, disabled Defines whether a checkdigit should be added, only applicable
to Code 2 of 5 interleaved.

ITF-14 (UPC Shipping Container Symbol or Case
Code)
Identifier: itf14

Allowed Characters: 0-9

Supported Data Types: eci , hibc

Deutsche Post Leitcode
Identifier: dp-leitcode

Allowed Characters: 0-9

Supported Data Types: eci , hibc

Deutsche Post Identcode
Identifier: dp-identcode

Allowed Characters: 0-9

Supported Data Types: eci , hibc

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

243

Nummer der Versandeinheit / Serial Shipping
Container Code
Identifier: nve18 or sscc18

Allowed Content: 0-9

Supported Data Types: gs1

GS1 Composite
GS1 Composite symbology according to ISO/IEC 24723:2010.

Identifier: composite

Consists of a linear and 2 dimensional part. The subtypes refer to the 2D
one.

Default Subtype: cc-a

Allowed Content: ASCII

Supported Data Types: gs1

Supported Subtypes

Identifier Description

cc-a MicroPDF417 symbol variant, encodes up to 56 alphanumeric digits.

cc-b MicroPDF417 symbol variant, encodes up to 338 alphanumeric digits.

cc-c PDF417 symbol variant, encodes up to 2361 alphanumeric digits.

-ro-barcode-type

Default Value Possible Values Description

auto An absolute length Changes the separator length.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX D: Supported Barcode Types and Properties

244

-ro-barcode-composite-type

Default
Value

Possible Values Description

code128 Behaves like -ro-barcode-type , but is
restricted to the following types/subtypes:

 code128

 databar

 databar stacked

 databar omnidirectional-stacked

 databar-expanded

 databar-expanded stacked

 databar-limited

 ean-8

 upc-a

 upc-e

Defines the barcode type of the linear
part of a GS1 Composite barcode.

-ro-barcode-composite-content

Default Value Possible Values Description

auto Depends on the selected
barcode type.

Sets the content to be encoded in the linear part of a
GS1 composite barcode.

www.pdfreactor.com

APPENDIX D: Supported Barcode Types and Properties

245

APPENDIX E: CSS SUPPORT

E.1 Default Style Rules

The element's default styles are described in the user agent style sheet. While most of these styles are
adapted from the specifications33 and match the styles of browsers, PDFreactor adds some sets of style
rules, for example those related to pagination:

Special PDFreactor Default Style Rules

Selector Declarations

@page size: A4;

margin: 2cm;

white-space: pre-line;

counter-increment: page;

h1, h2, h3, h4, h5, h6 break-after: avoid;

@footnote padding-top: 6pt;

border-top: solid black thin;

-ro-border-length: 30%;

margin-top: 6pt;

::footnote-call counter-increment: footnote 1;

content: counter(footnote);

line-height: 100%;

font-size: 65%;

vertical-align: super;

::footnote-marker content: counter(footnote) ". ";

E.2 CSS Attribute Selector

PDFreactor supports the following CSS selectors which select elements that have certain attributes:

Supported attribute selectors

Attribute selector Meaning CSS Level

Elem[attr] An Elem element with a attr attribute. CSS 2.1

Elem[attr="val"] An Elem element whose attr attribute value is exactly equal to "val" . CSS 2.1

Continued

33 see https://html.spec.whatwg.org/multipage/rendering.html

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

246

https://html.spec.whatwg.org/multipage/rendering.html

Attribute selector Meaning CSS Level

Elem[attr~="val"] An Elem element whose attr attribute value is a list of whitespace-
separated values, one of which is exactly equal to "val" .

CSS 2.1

Elem[attr^="val"] An Elem element whose attr attribute value begins exactly with the string
"val" .

CSS 3

Elem[attr$="val"] An Elem element whose attr attribute value ends exactly with the string
"val" .

CSS 3

Elem[attr*="val"] An Elem element whose attr attribute value contains the substring
"val" .

CSS 3

E.3 Supported Page Size Formats
Keywords for the supported A series formats, based on DIN 476/ISO 216, and their corresponding oversize formats

A series Size [mm] RA oversizes Size [mm] SRA oversizes Size [mm]

A0 841 x 1189 RA0 860 x 1220 SRA0 900 x 1280

A1 594 x 841 RA1 610 x 860 SRA1 640 x 900

A2 420 x 594 RA2 430 x 610 SRA2 450 x 640

A3 297 x 420 RA3 305 x 430 SRA3 320 x 450

A4 210 x 297 RA4 215 x 305 SRA4 225 x 320

A5 148 x 210 RA5 152 x 215 SRA5 160 x 225

A6 105 x 148 RA6 107 x 152 SRA6 112 x 160

A7 74 x 105 RA7 76 x 107 SRA7 80 x 112

A8 52 x 74 RA8 53 x 76 SRA8 56 x 80

A9 37 x 52

A10 26 x 37

Continued

www.pdfreactor.com

E.3 Supported Page Size Formats

247

CSS Keywords for the supported B
series formats

B series Size [mm]

B1 707 x 1000

B2 500 x 707

B3 353 x 500

B4 250 x 353

B5 176 x 250

B6 125 x 176

B7 88 x 125

B8 62 x 88

B9 44 x 62

B10 31 x 44

Keywords for the supported C series
formats

C series Size [mm]

C1 648 x 917

C2 458 x 648

C3 324 x 458

C4 229 x 324

C5 162 x 229

C6 114 x 162

C7 81 x 114

C8 57 x 81

C9 40 x 57

C10 28 x 40

Keywords for supported international
page formats

Page format Size [in]

Letter 8.5 x 11

Legal 8.5 x 14

Ledger 11 x 17

Invoice 5.5 x 8

Executive 7.25 x 10.5

Broadsheet 17 x 22

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

248

E.4 Supported Hyphenation Languages

Hyphenation languages (a-f)

ISO 639-1 Language

af Afrikaans

as Assamese

bg Bulgarian

bn Bengali,
Bangla

ca Catalan

cy Welsh

da Danish

de New German

de-1901 German
traditional

de-CH German,
Switzerland

el Greek,
Modern

el_Polyton.hyp Greek,
Polyton

en English (US)

en-GB English (GB)

eo Esperanto

es Spanish

et Estonian

eu Basque

fi Finnish

fr French

fur Friulian

Hyphenation languages (g-m)

ISO 639-1 Language

gl Galician

grc Greek, Ancient

gu Gujarati

hi Hindi

hr Croatian

hsb Upper Sorbian

ia Interlingua

id Indonesian (Bahasa
Indonesia)

is Icelandic

it Italian

ka Georgian

kmr Kurmanji (Northern
Kurdish)

kn Kannada

la Latin

la Latin

la-CL Latin

lt Lithuanian

ml Malayalam

mn Mongolian

mr Marathi

mul Multiple languages

Hyphenation languages (n-z)

ISO 639-1 Language

nb Norwegian Bokmål

nl Dutch

nn Norwegian Nynorsk

oc Occitan

or Oriya

pa Panjabi

pl Polish

pms Piemontese

pt Portuguese

rm Romansh

ro Romanian

ru Russian

sa Sanskrit

sl Slovenian

sr-Cyrl Serbian, Cyrillic

sr-Latn Serbian, Latin

sv Swedish

ta Tamil

te Telugu

th Thai

tk Turkmen

tr Turkish

uk Ukrainian

www.pdfreactor.com

E.4 Supported Hyphenation Languages

249

E.5 Supported length units

Absolute length units

Unit Description

mm millimeters

cm centimeters

q quarter-millimeters

in inches

pt points

px pixels

pc pica

Proprietary length units

Unit Description

-ro-pw

-ro-pi
Equal to 1% of the width of the first page,
including its margins.

-ro-ph

-ro-pb
Equal to 1% of the height of the first page,
including its margins.

-ro-pmin Equal to the smaller of '-ro-pw' and '-ro-
ph'.

-ro-pmax Equal to the larger of '-ro-pw' and '-ro-ph'.

-ro-bw

-ro-bi
Equal to 1% of the width of the page
bleed box of the first page.

-ro-bh

-ro-bb
Equal to 1% of the height of the page
bleed box of the first page.

-ro-bmin Equal to the smaller of '-ro-bw' and '-ro-
bh'.

-ro-bmax Equal to the larger of '-ro-bw' and '-ro-bh'.

Relative length units

Unit Description

% percent

em Relative to the font size of the element.

rem Relative to the font size of the root element.

ex Equal to the used x-height of the first available
font.

ch Equal to the width of the "0" glyph in the font of
the element.

vw

vi
Equal to 1% of the width of the content area of
the first page.

vh

vb
Equal to 1% of the height of the content area of
the first page.

vmin Equal to the smaller of 'vw' and 'vh'.

vmax Equal to the larger of 'vw' and 'vh'.

cap Equal the capital letter height of the font.

ic Equal to the width of the glyph "水" (U+6C34) in
the font of the element.

lh Equal to the line height of the element.

rlh Equal to the line height of the root element.

Viewport-relative lengths that are aliases in PDFreactor

Units Synonymous Units

vw vi lvw , lvi , svw , svi , dvw , dvi

vh vb lvh , lvb , svh , svb , dvh , dvb

vmin lvmin , svmin , dvmin

vmax lvmax , svmax , dvmax

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

250

E.6 CSS Color Keywords
Supported Color Keywords

Color name Color hex RGB Decimal

aliceblue #F0F8FF 240,248,255

antiquewhite #FAEBD7 250,235,215

aqua #00FFFF 0,255,255

aquamarine #7FFFD4 127,255,212

azure #F0FFFF 240,255,255

beige #F5F5DC 245,245,220

bisque #FFE4C4 255,228,196

black #000000 0,0,0

blanchedalmond #FFEBCD 255,235,205

blue #0000FF 0,0,255

blueviolet #8A2BE2 138,43,226

brown #A52A2A 165,42,42

burlywood #DEB887 222,184,135

cadetblue #5F9EA0 95,158,160

chartreuse #7FFF00 127,255,0

chocolate #D2691E 210,105,30

coral #FF7F50 255,127,80

cornflowerblue #6495ED 100,149,237

cornsilk #FFF8DC 255,248,220

crimson #DC143C 220,20,60

cyan #00FFFF 0,255,255

darkblue #00008B 0,0,139

darkcyan #008B8B 0,139,139

Continued

www.pdfreactor.com

E.6 CSS Color Keywords

251

Color name Color hex RGB Decimal

darkgoldenrod #B8860B 184,134,11

darkgray/darkgrey #A9A9A9 169,169,169

darkgreen #006400 0,100,0

darkkhaki #BDB76B 189,183,107

darkmagenta #8B008B 139,0,139

darkolivegreen #556B2F 85,107,47

darkorange #FF8C00 255,140,0

darkorchid #9932CC 153,50,204

darkred #8B0000 139,0,0

darksalmon #E9967A 233,150,122

darkseagreen #8FBC8F 143,188,143

darkslateblue #483D8B 72,61,139

darkslategray/darkslategrey #2F4F4F 47,79,79

darkturquoise #00CED1 0,206,209

darkviolet #9400D3 148,0,211

deeppink #FF1493 255,20,147

deepskyblue #00BFFF 0,191,255

dimgray/dimgrey #696969 105,105,105

dodgerblue #1E90FF 30,144,255

firebrick #B22222 178,34,34

floralwhite #FFFAF0 255,250,240

forestgreen #228B22 34,139,34

fuchsia #FF00FF 255,0,255

gainsboro #DCDCDC 220,220,220

ghostwhite #F8F8FF 248,248,255

Continued

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

252

Color name Color hex RGB Decimal

gold #FFD700 255,215,0

goldenrod #DAA520 218,165,32

gray/grey #808080 128,128,128

green #008000 0,128,0

greenyellow #ADFF2F 173,255,47

honeydew #F0FFF0 240,255,240

hotpink #FF69B4 255,105,180

indianred #CD5C5C 205,92,92

indigo #4B0082 75,0,130

ivory #FFFFF0 255,255,240

khaki #F0E68C 240,230,140

lavender #E6E6FA 230,230,250

lavenderblush #FFF0F5 255,240,245

lawngreen #7CFC00 124,252,0

lemonchiffon #FFFACD 255,250,205

lightblue #ADD8E6 173,216,230

lightcoral #F08080 240,128,128

lightcyan #E0FFFF 224,255,255

lightgoldenrodyellow #FAFAD2 250,250,210

lightgray/lightgrey #D3D3D3 211,211,211

lightgreen #90EE90 144,238,144

lightpink #FFB6C1 255,182,193

lightsalmon #FFA07A 255,160,122

lightseagreen #20B2AA 32,178,170

lightskyblue #87CEFA 135,206,250

Continued

Continued

www.pdfreactor.com

E.6 CSS Color Keywords

253

Color name Color hex RGB Decimal

lightslategray/lightslategrey #778899 119,136,153

lightsteelblue #B0C4DE 176,196,222

lightyellow #FFFFE0 255,255,224

lime #00FF00 0,255,0

limegreen #32CD32 50,205,50

linen #FAF0E6 250,240,230

magenta #FF00FF 255,0,255

maroon #800000 128,0,0

mediumaquamarine #66CDAA 102,205,170

mediumblue #0000CD 0,0,205

mediumorchid #BA55D3 186,85,211

mediumpurple #9370DB 147,112,219

mediumseagreen #3CB371 60,179,113

mediumslateblue #7B68EE 123,104,238

mediumspringgreen #00FA9A 0,250,154

mediumturquoise #48D1CC 72,209,204

mediumvioletred #C71585 199,21,133

midnightblue #191970 25,25,112

mintcream #F5FFFA 245,255,250

mistyrose #FFE4E1 255,228,225

moccasin #FFE4B5 255,228,181

navajowhite #FFDEAD 255,222,173

navy #000080 0,0,128

oldlace #FDF5E6 253,245,230

olive #808000 128,128,0

Continued

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

254

Color name Color hex RGB Decimal

olivedrab #6B8E23 107,142,35

orange #FFA500 255,165,0

orangered #FF4500 255,69,0

orchid #DA70D6 218,112,214

palegoldenrod #EEE8AA 238,232,170

palegreen #98FB98 152,251,152

paleturquoise #AFEEEE 175,238,238

palevioletred #DB7093 219,112,147

papayawhip #FFEFD5 255,239,213

peachpuff #FFDAB9 255,218,185

peru #CD853F 205,133,63

pink #FFC0CB 255,192,203

plum #DDA0DD 221,160,221

powderblue #B0E0E6 176,224,230

purple #800080 128,0,128

rebeccapurple #663399 102,51,153

red #FF0000 255,0,0

rosybrown #BC8F8F 188,143,143

royalblue #4169E1 65,105,225

saddlebrown #8B4513 139,69,19

salmon #FA8072 250,128,114

sandybrown #F4A460 244,164,96

seagreen #2E8B57 46,139,87

seashell #FFF5EE 255,245,238

sienna #A0522D 160,82,45

Continued

Continued

www.pdfreactor.com

E.6 CSS Color Keywords

255

Color name Color hex RGB Decimal

silver #C0C0C0 192,192,192

skyblue #87CEEB 135,206,235

slateblue #6A5ACD 106,90,205

slategray/slategrey #708090 112,128,144

snow #FFFAFA 255,250,250

springgreen #00FF7F 0,255,127

steelblue #4682B4 70,130,180

tan #D2B48C 210,180,140

teal #008080 0,128,128

thistle #D8BFD8 216,191,216

tomato #FF6347 255,99,71

turquoise #40E0D0 64,224,208

violet #EE82EE 238,130,238

wheat #F5DEB3 245,222,179

white #FFFFFF 255,255,255

whitesmoke #F5F5F5 245,245,245

yellow #FFFF00 255,255,0

yellowgreen #9ACD32 154,205,50

-ro-comment-highlight #FFFF0B 255,255,11

-ro-comment-underline #23FF06 35,255,6

-ro-comment-strikeout #FB0007 251,0,7

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

256

E.7 Counter and Ordered List Style Types
Supported counter and ordered list style types

Counter style name 1 12 123 1234

decimal 1. 12. 123. 1234.

decimal-leading-zero 01. 12. 123. 1234.

super-decimal ¹. ¹². ¹²³. ¹²³⁴.

upper-hexadecimal 1. C. 7B. 4D2.

lower-hexadecimal 1. c. 7b. 4d2.

octal 1. 14. 173. 2322.

binary 1. 1100. 1111011. 10011010010.

upper-roman I. XII. CXXIII. MCCXXXIV.

lower-roman i. xii. cxxiii. mccxxxiv.

upper-alpha A. L. DS. AUL.

lower-alpha a. l. ds. aul.

arabic-indic ۱. ۱٢. ۱٢۳. ۱٢۳٤.

armenian Ա. ԺԲ. ՃԻԳ. ՌՄԼԴ.

upper-armenian Ա. ԺԲ. ՃԻԳ. ՌՄԼԴ.

lower-armenian ա. ժբ. ճիգ. ռմլդ.

bengali ১. ১২. ১২৩. ১২৩৪.

Continued

www.pdfreactor.com

E.7 Counter and Ordered List Style Types

257

Counter style name 1 12 123 1234

cambodian ១. ១២. ១២៣. ១២៣៤.

devanagari १. १२. १२३. १२३४.

georgian ა. იბ. რკგ. ჩსლდ.

upper-greek Α. Μ. ΕΓ. ΒΓΚ.

lower-greek α. μ. εγ. βγκ.

gujarati ૧. ૧૨. ૧૨૩. ૧૨૩૪.

gurmukhi ੧. ੧੨. ੧੨੩. ੧੨੩੪.

hebrew .א בי . גכק . דלר׳א .

hiragana あ、 し、 いひ、 のめ、

hiragana-iroha い、 を、 ろや、 のを、

japanese-formal 壱、 壱拾弐、 壱百弐拾参、 壱阡弐百参拾四、

japanese-informal 一、 十二、 百二十三、 千二百三十四、

kannada ೧. ೧೨. ೧೨೩. ೧೨೩೪.

katakana ア、 シ、 イヒ、 ノメ、

katakana-iroha イ、 ヲ、 ロヤ、 ノヲ、

khmer ១. ១២. ១២៣. ១២៣៤.

lao ໑. ໑໒. ໑໒໓. ໑໒໓໔.

Continued

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

258

Counter style name 1 12 123 1234

upper-latin A. L. DS. AUL.

lower-latin a. l. ds. aul.

malayalam ൧. ൧൨. ൧൨൩. ൧൨൩൪.

mongolian ᠑. ᠑᠒. ᠑᠒᠓. ᠑᠒᠓᠔.

myanmar ၁. ၁၂. ၁၂၃. ၁၂၃၄.

oriya ୧. ୧୨. ୧୨୩. ୧୨୩୪.

persian ۱. ۱۲. ۱۲۳. ۱۲۳۴.

simp-chinese-formal 壹、 壹拾贰、 壹佰贰拾叁、 壹仟贰佰叁拾肆、

simp-chinese-informal 一、 十二、 一百二十三、 一千二百三十四、

telugu ౧. ౧౨. ౧౨౩. ౧౨౩౪.

thai ๑. ๑๒. ๑๒๓. ๑๒๓๔.

tibetan ༡. ༡༢. ༡༢༣. ༡༢༣༤.

urdu ۱. ۱۲. ۱۲۳. ۱۲۳۴.

-ro-footnote * ‡‡‡ ††††††††††††††††††††††††††††††† 1234

-ro-spelled-out-en one twelve one hundred twenty-three one thousand two hundred thirty-four

-ro-spelled-out-en-ordinal first twelfth one hundred twenty-third one thousand two hundred thirty-fourth

-ro-spelled-out-de eins zwölf einhundertdreiundzwanzig eintausendzweihundertvierunddreißig

Continued

Continued

www.pdfreactor.com

E.7 Counter and Ordered List Style Types

259

Counter style name 1 12 123 1234

-ro-spelled-out-fr un douze cent vingt-trois mille deux cent trente-quatre

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

260

E.8 Supported Values for Transliteration

The following lists all valid input/output value pairs for the transliterate option of
-ro-text-replace , according to the underlying ICU4J implementation.

"Accents" "Any"
"am" "am_FONIPA"
"am" "am_Latn/BGN"
"am" "ar"
"am" "chr"
"am" "fa"
"am_Brai" "am_Ethi"
"am_Ethi" "am_Brai"
"am_Ethi""am_Ethi/Geminate"

"am_Ethi" "d0_Morse"
"am_FONIPA" "am"
"Amharic""Amharic/Geminate"

"Amharic" "Latin/BGN"
"Any" "Accents"
"Any" "am"
"Any" "am_Brai"
"Any" "am_Ethi"
"Any""am_Ethi/Geminate"
"Any" "am_FONIPA"
"Any" "am_Latn/BGN"
"Any" "Any"
"Any" "Any/C"
"Any" "Any/Java"
"Any" "Any/Perl"
"Any" "Any/Unicode"
"Any" "Any/XML"
"Any" "Any/XML10"
"Any" "ar"
"Any" "ar_Latn/BGN"
"Any" "Arab"
"Any" "Arabic"
"Any" "Armenian"
"Any" "Armn"
"Any" "az/BGN"
"Any" "be_Latn/BGN"
"Any" "Beng"
"Any" "Bengali"
"Any" "bg_Latn/BGN"
"Any" "blt_FONIPA"
"Any" "Bopo"
"Any" "Bopomofo"
"Any""Braille/Amharic"
"Any""byn_Ethi/Tekie_Alibekit"

"Any""byn_Ethi/Xaleget"
"Any""byn_Latn/Tekie_Alibekit"

"Any""byn_Latn/Xaleget"
"Any""CanadianAboriginal"

"Any" "Cans"
"Any" "CaseFold"
"Any" "ch_FONIPA"
"Any" "chr"
"Any" "chr_FONIPA"
"Any" "cs_FONIPA"
"Any" "cy_FONIPA"
"Any" "Cyrillic"
"Any""Cyrillic/Gutgarts"

"Any" "Cyrl"
"Any" "Cyrl/Gutgarts"
"Any" "Deva"
"Any" "Devanagari"
"Any" "dsb_FONIPA"
"Any" "dv_Latn/BGN"
"Any" "el_Latn/BGN"
"Any" "eo_FONIPA"
"Any" "es_419_FONIPA"
"Any" "es_FONIPA"
"Any" "Ethi"
"Any" "Ethi/Aethiopi"
"Any" "Ethi/ALALOC"
"Any""Ethi/Beta_Metsehaf"

"Any""Ethi/Gurage_2013"
"Any" "Ethi/Gutgarts"

"Any""Ethi/IES_JES_1964"

"Any" "Ethi/Lambdin"
"Any" "Ethi/SERA"
"Any""Ethi/Williamson"
"Any" "Ethiopic"
"Any""Ethiopic/Aethiopica"

"Any""Ethiopic/ALALOC"
"Any""Ethiopic/Amharic"
"Any""Ethiopic/Beta_Metsehaf"

"Any""Ethiopic/Gurage"
"Any""Ethiopic/Gutgarts"

"Any""Ethiopic/IES_JES_1964"

"Any""Ethiopic/Lambdin"
"Any" "Ethiopic/SERA"
"Any""Ethiopic/Tekie_Alibekit"

"Any""Ethiopic/Williamson"

"Any""Ethiopic/Xalaget"
"Any" "fa"
"Any" "fa_FONIPA"
"Any" "fa_Latn/BGN"
"Any" "FCC"
"Any" "FCD"
"Any" "Geor"
"Any" "Georgian"
"Any" "Greek"
"Any" "Greek/UNGEGN"
"Any" "Grek"
"Any" "Grek/UNGEGN"
"Any" "Gujarati"
"Any" "Gujr"
"Any" "Gurmukhi"
"Any" "Guru"
"Any" "gz_Ethi"
"Any" "ha_NE"
"Any" "Hang"
"Any" "Hangul"
"Any" "Hans"
"Any" "Hant"
"Any" "he_Latn/BGN"
"Any" "Hebr"
"Any" "Hebrew"
"Any" "Hex"
"Any" "Hex/C"
"Any" "Hex/Java"
"Any" "Hex/Perl"
"Any" "Hex/Plain"
"Any" "Hex/Unicode"
"Any" "Hex/XML"
"Any" "Hex/XML10"
"Any" "Hira"
"Any" "Hiragana"
"Any""hy_AREVMDA_FONIPA"

"Any" "hy_FONIPA"
"Any" "hy_Latn/BGN"
"Any" "ia_FONIPA"
"Any" "ja"
"Any" "ja_Latn/BGN"
"Any" "Jamo"
"Any" "ka_Latn/BGN"
"Any""ka_Latn/BGN_1981"
"Any" "Kana"
"Any" "Kannada"
"Any" "Katakana"
"Any" "kk_FONIPA"
"Any" "kk_Latn/BGN"
"Any" "Knda"
"Any" "ko"
"Any" "ko_Latn/BGN"
"Any" "ky_FONIPA"
"Any" "ky_Latn/BGN"
"Any" "la_FONIPA"
"Any" "Latin"

"Any""Latin/Aethiopica"
"Any""Latin/Aethiopica_Geminate"

"Any" "Latin/ALALOC"
"Any""Latin/ALALOC_Geminate"

"Any""Latin/Beta_Metsehaf"

"Any""Latin/BetaMetsehaf_Geminate"

"Any" "Latin/BGN"
"Any" "Latin/ES3842"
"Any""Latin/IES_JES_1964"

"Any""Latin/IES_JES_1964_Geminate"

"Any" "Latin/Lambdin"
"Any" "Latin/Names"
"Any" "Latin/SERA"
"Any""Latin/Tekie_Alibekit"

"Any" "Latin/UNGEGN"
"Any""Latin/Williamson"
"Any" "Latin/Xaleget"
"Any" "Latn"
"Any" "Latn/Aethiopi"
"Any""Latn/Aethiopi_Geminate"

"Any" "Latn/ALALOC"
"Any""Latn/ALALOC_Geminate"

"Any""Latn/Beta_Metsehaf"

"Any""Latn/Beta_Metsehaf_Geminate"

"Any" "Latn/ES3842"
"Any""Latn/IES_JES_1964"

"Any""Latn/IES_JES_1964_Geminate"

"Any" "Latn/Lambdin"
"Any" "Latn/SERA"
"Any" "Latn/UNGEGN"
"Any""Latn/Williamson"
"Any" "Lower"
"Any" "Malayalam"
"Any" "mk_Latn/BGN"
"Any" "Mlym"
"Any" "mn_Latn/BGN"
"Any" "mn_Latn/MNS"
"Any" "my"
"Any" "my_FONIPA"
"Any" "my_Latn"
"Any" "Name"
"Any" "NFC"
"Any" "NFD"
"Any" "NFKC"
"Any" "NFKD"
"Any" "Null"
"Any" "nv_FONIPA"
"Any" "Oriya"
"Any" "Orya"
"Any" "pl_FONIPA"
"Any" "ps_Latn/BGN"
"Any" "Publishing"
"Any" "Remove"
"Any""rm_FONIPA_SURSILV"

"Any" "ro_FONIPA"
"Any" "ru"
"Any" "ru/BGN"
"Any" "ru_Latn/BGN"
"Any" "Sarb"
"Any" "sat_FONIPA"
"Any""sgw_Ethi/Gurage_2013"

"Any" "si_FONIPA"
"Any" "si_Latn"
"Any" "sk_FONIPA"
"Any" "sr_Latn/BGN"
"Any" "Syrc"
"Any" "Syriac"
"Any" "ta_FONIPA"
"Any" "Tamil"
"Any" "Taml"
"Any" "Telu"
"Any" "Telugu"

"Any" "Thaa"
"Any" "Thaana"
"Any" "Thai"
"Any" "Title"
"Any" "tk/BGN"
"Any" "ug_FONIPA"
"Any" "uk_Latn/BGN"
"Any" "und_FONIPA"
"Any" "und_FONXSAMP"
"Any" "Upper"
"Any" "ur"
"Any" "uz/BGN"
"Any" "uz_Cyrl"
"Any" "uz_Latn"
"Any" "vec_FONIPA"
"Any" "xh_FONIPA"
"Any" "yo_BJ"
"Any" "zh"
"Any" "zu_FONIPA"
"ar" "ar_Latn/BGN"
"Arab" "Latn"
"Arabic" "Latin"
"Arabic" "Latin/BGN"
"Armenian" "Latin"
"Armenian""Latin/BGN"
"Armn" "Latn"
"ASCII" "Latin"
"az" "Lower"
"az" "Title"
"az" "Upper"
"az_Cyrl" "az/BGN"
"Azerbaijani""Latin/BGN"

"be" "be_Latn/BGN"
"Belarusian""Latin/BGN"
"Beng" "Arab"
"Beng" "Deva"
"Beng" "Gujr"
"Beng" "Guru"
"Beng" "Knda"
"Beng" "Latn"
"Beng" "Mlym"
"Beng" "Orya"
"Beng" "Taml"
"Beng" "Telu"
"Beng" "ur"
"Bengali" "Arabic"
"Bengali""Devanagari"
"Bengali" "Gujarati"
"Bengali" "Gurmukhi"
"Bengali" "Kannada"
"Bengali" "Latin"
"Bengali" "Malayalam"
"Bengali" "Oriya"
"Bengali" "Tamil"
"Bengali" "Telugu"
"bg" "bg_Latn/BGN"
"blt" "blt_FONIPA"
"Bopo" "Latn"
"Bopomofo" "Latin"
"Braille""Ethiopic/Amharic"

"Bulgarian""Latin/BGN"
"Burmese" "Latin"
"byn_Ethi""byn_Latn/Tekie_Alibekit"

"byn_Ethi""byn_Latn/Xaleget"

"byn_Latn""byn_Ethi/Tekie_Alibekit"

"byn_Latn""byn_Ethi/Xaleget"

"CanadianAboriginal""Latin"

"Cans" "Latn"
"ch" "am"
"ch" "ar"
"ch" "ch_FONIPA"
"ch" "chr"

"ch" "fa"
"chr" "chr_FONIPA"
"cs" "am"
"cs" "ar"
"cs" "chr"
"cs" "cs_FONIPA"
"cs" "fa"
"cs" "ja"
"cs" "ko"
"cs_FONIPA" "ja"
"cs_FONIPA" "ko"
"cy" "cy_FONIPA"
"Cyrillic""Ethiopic/Gutgarts"

"Cyrillic" "Latin"
"Cyrl""Ethi/Gutgarts"
"Cyrl" "Latn"
"d0_Morse" "am_Ethi"
"de" "ASCII"
"Deva" "Arab"
"Deva" "Beng"
"Deva" "Gujr"
"Deva" "Guru"
"Deva" "Knda"
"Deva" "Latn"
"Deva" "Mlym"
"Deva" "Orya"
"Deva" "Taml"
"Deva" "Telu"
"Deva" "ur"
"Devanagari" "Arabic"
"Devanagari""Bengali"
"Devanagari""Gujarati"
"Devanagari""Gurmukhi"
"Devanagari""Kannada"
"Devanagari" "Latin"
"Devanagari""Malayalam"
"Devanagari" "Oriya"
"Devanagari" "Tamil"
"Devanagari" "Telugu"
"Digit" "Tone"
"dsb" "dsb_FONIPA"
"dv" "dv_Latn/BGN"
"el" "el_Latn/BGN"
"el" "Lower"
"el" "Title"
"el" "Upper"
"eo" "am"
"eo" "ar"
"eo" "chr"
"eo" "eo_FONIPA"
"eo" "fa"
"es" "am"
"es" "ar"
"es" "chr"
"es" "es_FONIPA"
"es" "fa"
"es" "ja"
"es" "zh"
"es_419" "am"
"es_419" "ar"
"es_419" "chr"
"es_419" "fa"
"es_419" "ja"
"es_419" "zh"
"es_FONIPA" "am"
"es_FONIPA""es_419_FONIPA"

"es_FONIPA" "ja"
"es_FONIPA" "zh"
"Ethi""Cyrl/Gutgarts"
"Ethi" "Latn"
"Ethi""Latn/Aethiopi"
"Ethi""Latn/Aethiopi_Geminate"

www.pdfreactor.com

E.8 Supported Values for Transliteration

261

"Ethi" "Latn/ALALOC"
"Ethi""Latn/ALALOC_Geminate"

"Ethi""Latn/Beta_Metsehaf"

"Ethi""Latn/Beta_Metsehaf_Geminate"

"Ethi" "Latn/ES3842"
"Ethi""Latn/IES_JES_1964"

"Ethi""Latn/IES_JES_1964_Geminate"

"Ethi" "Latn/Lambdin"
"Ethi" "Latn/SERA"
"Ethi""Latn/Williamson"
"Ethi""sgw_Ethi/Gurage_2013"

"Ethiopic""Braille/Amharic"

"Ethiopic""Cyrillic/Gutgarts"

"Ethiopic""Ethiopic/Gurage"

"Ethiopic" "Latin"
"Ethiopic""Latin/Aethiopica"

"Ethiopic""Latin/Aethiopica_Geminate"

"Ethiopic""Latin/ALALOC"

"Ethiopic""Latin/ALALOC_Geminate"

"Ethiopic""Latin/Beta_Metsehaf"

"Ethiopic""Latin/BetaMetsehaf_Geminate"

"Ethiopic""Latin/ES3842"

"Ethiopic""Latin/IES_JES_1964"

"Ethiopic""Latin/IES_JES_1964_Geminate"

"Ethiopic""Latin/Lambdin"

"Ethiopic""Latin/SERA"
"Ethiopic""Latin/Tekie_Alibekit"

"Ethiopic""Latin/Williamson"

"Ethiopic""Latin/Xaleget"

"fa" "fa_FONIPA"
"fa" "fa_Latn/BGN"
"Fullwidth""Halfwidth"
"Geez" "Ethiopic"
"Geez" "Musnad"
"Geor" "Latn"
"Georgian" "Latin"
"Georgian""Latin/BGN"
"Greek" "Latin"
"Greek" "Latin/BGN"
"Greek""Latin/UNGEGN"
"Grek" "Latn"
"Grek" "Latn/UNGEGN"
"Gujarati" "Arabic"
"Gujarati" "Bengali"
"Gujarati""Devanagari"
"Gujarati" "Gurmukhi"
"Gujarati" "Kannada"
"Gujarati" "Latin"
"Gujarati""Malayalam"
"Gujarati" "Oriya"
"Gujarati" "Tamil"
"Gujarati" "Telugu"
"Gujr" "Arab"
"Gujr" "Beng"
"Gujr" "Deva"
"Gujr" "Guru"
"Gujr" "Knda"
"Gujr" "Latn"
"Gujr" "Mlym"
"Gujr" "Orya"
"Gujr" "Taml"
"Gujr" "Telu"
"Gujr" "ur"
"Gurage" "Ethiopic"
"Gurmukhi" "Arabic"
"Gurmukhi" "Bengali"
"Gurmukhi""Devanagari"
"Gurmukhi" "Gujarati"
"Gurmukhi" "Kannada"
"Gurmukhi" "Latin"
"Gurmukhi""Malayalam"
"Gurmukhi" "Oriya"
"Gurmukhi" "Tamil"
"Gurmukhi" "Telugu"
"Guru" "Arab"
"Guru" "Beng"
"Guru" "Deva"
"Guru" "Gujr"
"Guru" "Knda"
"Guru" "Latn"
"Guru" "Mlym"
"Guru" "Orya"
"Guru" "Taml"

"Guru" "Telu"
"Guru" "ur"
"gz_Ethi" "Sarb"
"ha" "ha_NE"
"Halfwidth""Fullwidth"
"Han" "Latin"
"Han" "Latin/Names"
"Hang" "Latn"
"Hangul" "Latin"
"Hani" "Latn"
"Hans" "Hant"
"Hant" "Hans"
"he" "he_Latn/BGN"
"Hebr" "Latn"
"Hebrew" "Latin"
"Hebrew" "Latin/BGN"
"Hex" "Any"
"Hex" "Any/C"
"Hex" "Any/Java"
"Hex" "Any/Perl"
"Hex" "Any/Unicode"
"Hex" "Any/XML"
"Hex" "Any/XML10"
"Hira" "Kana"
"Hira" "Latn"
"Hiragana" "Katakana"
"Hiragana" "Latin"
"hy" "am"
"hy" "ar"
"hy" "chr"
"hy" "fa"
"hy" "hy_FONIPA"
"hy" "hy_Latn/BGN"
"hy_AREVMDA" "am"
"hy_AREVMDA" "ar"
"hy_AREVMDA" "chr"
"hy_AREVMDA" "fa"
"hy_AREVMDA""hy_AREVMDA_FONIPA"

"ia" "am"
"ia" "ar"
"ia" "chr"
"ia" "fa"
"ia" "ia_FONIPA"
"IPA" "XSampa"
"it" "am"
"it" "ja"
"ja_Hrkt""ja_Latn/BGN"
"ja_Latn" "ko"
"ja_Latn" "ru"
"Jamo" "Latin"
"Jamo" "Latn"
"ka" "ka_Latn/BGN"
"ka""ka_Latn/BGN_1981"
"Kana" "Hira"
"Kana" "Latn"
"Kannada" "Arabic"
"Kannada" "Bengali"
"Kannada""Devanagari"
"Kannada" "Gujarati"
"Kannada" "Gurmukhi"
"Kannada" "Latin"
"Kannada" "Malayalam"
"Kannada" "Oriya"
"Kannada" "Tamil"
"Kannada" "Telugu"
"Katakana" "Hiragana"
"Katakana" "Latin"
"Katakana""Latin/BGN"
"Kazakh" "Latin/BGN"
"Kirghiz" "Latin/BGN"
"kk" "am"
"kk" "ar"
"kk" "chr"
"kk" "fa"
"kk" "kk_FONIPA"
"kk" "kk_Latn/BGN"
"Knda" "Arab"
"Knda" "Beng"
"Knda" "Deva"
"Knda" "Gujr"
"Knda" "Guru"
"Knda" "Latn"
"Knda" "Mlym"

"Knda" "Orya"
"Knda" "Taml"
"Knda" "Telu"
"Knda" "ur"
"ko" "ko_Latn/BGN"
"Korean" "Latin/BGN"
"ky" "am"
"ky" "ar"
"ky" "chr"
"ky" "fa"
"ky" "ky_FONIPA"
"ky" "ky_Latn/BGN"
"la" "la_FONIPA"
"Latin" "Arabic"
"Latin" "Armenian"
"Latin" "ASCII"
"Latin" "Bengali"
"Latin" "Bopomofo"
"Latin""CanadianAboriginal"

"Latin" "Cyrillic"
"Latin" "Devanagari"
"Latin" "Ethiopic"
"Latin""Ethiopic/Aethiopica"

"Latin""Ethiopic/ALALOC"

"Latin""Ethiopic/Beta_Metsehaf"

"Latin""Ethiopic/IES_JES_1964"

"Latin""Ethiopic/Lambdin"

"Latin""Ethiopic/SERA"
"Latin""Ethiopic/Tekie_Alibekit"

"Latin""Ethiopic/Williamson"

"Latin""Ethiopic/Xalaget"

"Latin" "Georgian"
"Latin" "Greek"
"Latin""Greek/UNGEGN"
"Latin" "Gujarati"
"Latin" "Gurmukhi"
"Latin" "Hangul"
"Latin" "Hebrew"
"Latin" "Hiragana"
"Latin" "Jamo"
"Latin" "Kannada"
"Latin" "Katakana"
"Latin" "Malayalam"
"Latin""NumericPinyin"
"Latin" "Oriya"
"Latin" "Russian/BGN"
"Latin" "Syriac"
"Latin" "Tamil"
"Latin" "Telugu"
"Latin" "Thaana"
"Latin" "Thai"
"Latn" "Arab"
"Latn" "Armn"
"Latn" "Beng"
"Latn" "Bopo"
"Latn" "Cans"
"Latn" "Cyrl"
"Latn" "Deva"
"Latn" "Ethi"
"Latn""Ethi/Aethiopi"
"Latn" "Ethi/ALALOC"
"Latn""Ethi/Beta_Metsehaf"

"Latn""Ethi/IES_JES_1964"

"Latn" "Ethi/Lambdin"
"Latn" "Ethi/SERA"
"Latn""Ethi/Williamson"
"Latn" "Geor"
"Latn" "Grek"
"Latn" "Grek/UNGEGN"
"Latn" "Gujr"
"Latn" "Guru"
"Latn" "Hang"
"Latn" "Hebr"
"Latn" "Hira"
"Latn" "Jamo"
"Latn" "Kana"
"Latn" "Knda"
"Latn" "Mlym"
"Latn" "Orya"
"Latn" "Syrc"
"Latn" "Taml"
"Latn" "Telu"
"Latn" "Thaa"

"Latn" "Thai"
"lt" "Lower"
"lt" "Title"
"lt" "Upper"
"Macedonian""Latin/BGN"
"Malayalam" "Arabic"
"Malayalam" "Bengali"
"Malayalam""Devanagari"
"Malayalam""Gujarati"
"Malayalam""Gurmukhi"
"Malayalam" "Kannada"
"Malayalam" "Latin"
"Malayalam" "Oriya"
"Malayalam" "Tamil"
"Malayalam" "Telugu"
"Maldivian""Latin/BGN"
"mk" "mk_Latn/BGN"
"Mlym" "Arab"
"Mlym" "Beng"
"Mlym" "Deva"
"Mlym" "Gujr"
"Mlym" "Guru"
"Mlym" "Knda"
"Mlym" "Latn"
"Mlym" "Orya"
"Mlym" "Taml"
"Mlym" "Telu"
"Mlym" "ur"
"mn" "mn_Latn/BGN"
"mn" "mn_Latn/MNS"
"Mongolian""Latin/BGN"
"my" "am"
"my" "ar"
"my" "chr"
"my" "fa"
"my" "my_FONIPA"
"my" "my_Latn"
"my" "Zawgyi"
"Myanmar" "Latin"
"Name" "Any"
"nl" "Title"
"NumericPinyin""Latin"
"NumericPinyin""Pinyin"
"nv" "nv_FONIPA"
"Oriya" "Arabic"
"Oriya" "Bengali"
"Oriya" "Devanagari"
"Oriya" "Gujarati"
"Oriya" "Gurmukhi"
"Oriya" "Kannada"
"Oriya" "Latin"
"Oriya" "Malayalam"
"Oriya" "Tamil"
"Oriya" "Telugu"
"Orya" "Arab"
"Orya" "Beng"
"Orya" "Deva"
"Orya" "Gujr"
"Orya" "Guru"
"Orya" "Knda"
"Orya" "Latn"
"Orya" "Mlym"
"Orya" "Taml"
"Orya" "Telu"
"Orya" "ur"
"Pashto" "Latin/BGN"
"Persian" "Latin/BGN"
"Pinyin""NumericPinyin"
"pl" "am"
"pl" "ar"
"pl" "chr"
"pl" "fa"
"pl" "ja"
"pl" "pl_FONIPA"
"pl_FONIPA" "ja"
"ps" "ps_Latn/BGN"
"Publishing" "Any"
"rm_SURSILV" "am"
"rm_SURSILV" "ar"
"rm_SURSILV" "chr"
"rm_SURSILV" "fa"
"rm_SURSILV""rm_FONIPA_SURSILV"

"ro" "am"

"ro" "ar"
"ro" "chr"
"ro" "fa"
"ro" "ja"
"ro" "ro_FONIPA"
"ro_FONIPA" "ja"
"ru" "ja"
"ru" "ru_Latn/BGN"
"ru" "zh"
"ru_Latn" "ru/BGN"
"Russian" "Latin/BGN"
"Sarb" "gz_Ethi"
"sat" "am"
"sat" "ar"
"sat" "chr"
"sat" "fa"
"sat_Olck""sat_FONIPA"
"Serbian" "Latin/BGN"
"sgw_Ethi""Ethi/Gurage_2013"

"si" "am"
"si" "ar"
"si" "chr"
"si" "fa"
"si" "si_FONIPA"
"si" "si_Latn"
"Simplified""Traditional"

"sk" "am"
"sk" "ar"
"sk" "chr"
"sk" "fa"
"sk" "ja"
"sk" "sk_FONIPA"
"sk_FONIPA" "ja"
"sr" "sr_Latn/BGN"
"Syrc" "Latn"
"Syriac" "Latin"
"ta" "ta_FONIPA"
"Tamil" "Arabic"
"Tamil" "Bengali"
"Tamil" "Devanagari"
"Tamil" "Gujarati"
"Tamil" "Gurmukhi"
"Tamil" "Kannada"
"Tamil" "Latin"
"Tamil" "Malayalam"
"Tamil" "Oriya"
"Tamil" "Telugu"
"Taml" "Arab"
"Taml" "Beng"
"Taml" "Deva"
"Taml" "Gujr"
"Taml" "Guru"
"Taml" "Knda"
"Taml" "Latn"
"Taml" "Mlym"
"Taml" "Orya"
"Taml" "Telu"
"Taml" "ur"
"Telu" "Arab"
"Telu" "Beng"
"Telu" "Deva"
"Telu" "Gujr"
"Telu" "Guru"
"Telu" "Knda"
"Telu" "Latn"
"Telu" "Mlym"
"Telu" "Orya"
"Telu" "Taml"
"Telu" "ur"
"Telugu" "Arabic"
"Telugu" "Bengali"
"Telugu" "Devanagari"
"Telugu" "Gujarati"
"Telugu" "Gurmukhi"
"Telugu" "Kannada"
"Telugu" "Latin"
"Telugu" "Malayalam"
"Telugu" "Oriya"
"Telugu" "Tamil"
"Thaa" "Latn"
"Thaana" "Latin"
"Thai" "Latin"
"Thai" "Latn"

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

262

"tk_Cyrl" "tk/BGN"
"tlh" "am"
"tlh" "ar"
"tlh" "chr"
"tlh" "fa"
"tlh" "tlh_FONIPA"
"Tone" "Digit"
"tr" "Lower"

"tr" "Title"
"tr" "Upper"
"Traditional""Simplified"

"Turkmen" "Latin/BGN"
"ug" "ug_FONIPA"
"uk" "uk_Latn/BGN"
"Ukrainian""Latin/BGN"
"und_FONIPA" "ar"

"und_FONIPA" "chr"
"und_FONIPA" "fa"
"und_FONIPA""und_FONXSAMP"

"und_FONXSAMP""und_FONIPA"

"uz_Cyrl" "uz/BGN"
"uz_Cyrl" "uz_Latn"
"uz_Latn" "uz_Cyrl"
"Uzbek" "Latin/BGN"

"vec" "vec_FONIPA"
"xh" "am"
"xh" "ar"
"xh" "chr"
"xh" "fa"
"xh" "xh_FONIPA"
"XSampa" "IPA"
"yo" "yo_BJ"

"Zawgyi" "my"
"zh_Latn_PINYIN" "ru"
"zu" "am"
"zu" "ar"
"zu" "chr"
"zu" "fa"
"zu" "zu_FONIPA"

www.pdfreactor.com

E.8 Supported Values for Transliteration

263

E.9 CSS Documentation

PDFreactor supports the following CSS properties and functions.

E.9.1 Properties

additive-symbols

The additive-symbols descriptor lets you specify symbols when the value of a counter system descriptor is additive.

Value: [<integer> && [<string> | <identifier>]]#

Initial: 0 ""

Applies To: @counter-style

Inherited: No

￭ MDN documentation: additive-symbols

align-content

Sets how the space of a box is distributed among its content items along the cross-axis of a flex container or in block-
direction for block containers. Note that some values only work for flex containers or block containers.

Value: normal | [first | last]? baseline | stretch | space-between | space-around | space-evenly |
[safe | unsafe]? [start | center | end | flex-start | flex-end]

Initial: normal

Applies To: block containers, flex containers and grid containers

Inherited: No

￭ MDN documentation: align-content

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

264

https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/additive-symbols
https://developer.mozilla.org/en-US/docs/Web/CSS/align-content

align-items

This property specifies the default align-self for all of the child boxes participating in this box’s formatting context.

Value: normal | stretch | [first | last]? baseline | [safe | unsafe]? [center | start | end | self-start | self-
end | flex-start | flex-end]

Initial: normal

Inherited: No

￭ MDN documentation: align-items

￭ See also: align-self

align-self

Aligns the box within its containing block along the block/column/cross axis of the alignment container. This property can
override the behavior that was set for them via their parent's 'align-items' property.

Value: auto | normal | stretch | [first | last]? baseline | [safe | unsafe]? [center | start | end | self-start
| self-end | flex-start | flex-end]

Initial: auto

Applies To: flex items, grid items and absolutely-positioned boxes

Inherited: No

￭ MDN documentation: align-self

￭ See also: align-items

all

The all property is a shorthand that resets all CSS properties except 'direction' and 'unicode-bidi'. It does not reset custom
properties or prefixed properties.

Value: initial | inherit | unset

Initial:

Inherited: No

￭ MDN documentation: all

www.pdfreactor.com

E.9.1 Properties

265

https://developer.mozilla.org/en-US/docs/Web/CSS/align-items
https://developer.mozilla.org/en-US/docs/Web/CSS/align-self
https://developer.mozilla.org/en-US/docs/Web/CSS/all

-ro-alt-text

The property -ro-alt-text is used to specify the alternative description for elements for PDF tagging. Other properties that
support the values aria-name and aria-description may use the specified string as well.

Value: auto | none | <string>

Initial: auto

Inherited: No

auto

The alternate text is not specified and will be determined by other means, if necessary.

none

Deprecated synonym of auto.

<string>

Specific alternate text for the element. Often specified via the attr function, e.g. attr(src)

￭ See also: -ro-pdf-tag-alt

￭ More information: Accessibility (p. 178)

-ro-anchor

This property allows to define an anchor via style.
Note: an element defined as an anchor automatically also is assigned a PDF ID ("named destination") equal to the given
identifier.

Value: none | <string>+

Initial: none

Inherited: No

none

The element is not an anchor.

<string>

The element is an anchor with the given name.

￭ More information: Links (p. 91)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

266

-ro-art-size

Specifies the size of the ArtBox, one of the PDF page boxes.

Value: none | <length>{1,2} | [<page-size> || [portrait | landscape]] | media | trim | crop

Initial: none

Applies To: @page

Inherited: No

none

The element does not specify an ArtBox.

media

The ArtBox is specified with the same dimensions as the MediaBox.

trim

The ArtBox is specified with the same dimensions as the TrimBox.

crop

The ArtBox is specified with the same dimensions as the CropBox.

￭ More information: PDF Page Boxes (p. 149)

-ro-author

Sets the author in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to
multiple elements the values are concatenated, separated by a comma.)

Value: none | [<string> | content()]+

Initial: none

Applies To: all elements

Inherited: No

none

Does not set a author.

<string>

Sets the specified string as author.

content()

Sets the author from the content of the element.

￭ See also: -ro-keywords , -ro-subject , -ro-title

￭ More information: Metadata (p. 92)

www.pdfreactor.com

E.9.1 Properties

267

background

This property is a shorthand property for setting most background properties at the same place in the style sheet. Note
that only the final background layer may have a background-color.

Value: [<bg-layer>,]* <final-bg-layer>

Initial: see individual properties

Inherited: No

￭ MDN documentation: background

￭ See also: background-attachment , background-clip , background-color , background-

image , background-origin , background-position , background-repeat , background-size

background-attachment

If background images are specified, this property specifies whether they are fixed with regard to the viewport ('fixed') or
scroll along with the element ('scroll').
<attachment> = scroll | fixed

Value: <attachment>#

Initial: scroll

Inherited: No

scroll

The background is fixed with regard to the element itself and does not scroll with its contents. (It is effectively
attached to the element's border.)

fixed

The background is fixed with regard to the viewport. For pages this means that the background is repeated on
every page.

￭ MDN documentation: background-attachment

background-clip

Determines the background painting area, which determines the area within which the background is painted.

Value: [border-box | padding-box | content-box]#

Initial: border-box

Inherited: No

￭ MDN documentation: background-clip

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

268

https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://developer.mozilla.org/en-US/docs/Web/CSS/background-attachment
https://developer.mozilla.org/en-US/docs/Web/CSS/background-clip

background-color

This property sets the background color of an element. The color is drawn behind any background images.

Value: <color>

Initial: transparent

Inherited: No

￭ MDN documentation: background-color

￭ More information: CSS Color Keywords (p. 251)

background-image

This property sets the background image of an element. When setting a background image, authors should also specify a
background color that will be used when the image is unavailable. When the image is available, it is rendered on top of
the background color. (Thus, the color is visible in the transparent parts of the image).

Value: <bg-image>#

Initial: none

Inherited: No

￭ MDN documentation: background-image

background-origin

For elements rendered as a single box, specifies the background positioning area. For elements rendered as multiple
boxes (e.g. boxes on several pages), specifies which boxes 'box-decoration-break' operates on to determine the
background positioning area(s).

Value: <box>#

Initial: padding-box

Inherited: No

<box>

border-box | padding-box | content-box | -ro-page-box | -ro-bleed-box

-ro-page-box

Only valid for background-images of pages. The background is positioned relative to the page box (including the
page margins)

-ro-bleed-box

Only valid for background-images of pages. The background is positioned relative to the bleed box.

￭ MDN documentation: background-origin

￭ See also: box-decoration-break

www.pdfreactor.com

E.9.1 Properties

269

https://developer.mozilla.org/en-US/docs/Web/CSS/background-color
https://developer.mozilla.org/en-US/docs/Web/CSS/background-image
https://developer.mozilla.org/en-US/docs/Web/CSS/background-origin

background-position

If a background image has been specified, this property specifies its initial position.

Value: <position>#

Initial: 0% 0%

Inherited: No

￭ MDN documentation: background-position

background-repeat

If a background image is specified, this property specifies whether the image is repeated (tiled), and how.

Value: <repeat-style>#

Initial: repeat

Inherited: No

￭ MDN documentation: background-repeat

background-size

Specifies the size of the background images.

Value: <bg-size>#

Initial: auto

Inherited: No

￭ MDN documentation: background-size

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

270

https://developer.mozilla.org/en-US/docs/Web/CSS/background-position
https://developer.mozilla.org/en-US/docs/Web/CSS/background-repeat
https://developer.mozilla.org/en-US/docs/Web/CSS/background-size

-ro-barcode

This shorthand sets "-ro-barcode-content" and "-ro-barcode-type" as well as -ro-replacedelement, which is set to
'barcode' implicitly.

Value: <'-ro-barcode-content'> && <'-ro-barcode-type'>

Initial: auto qrcode

Inherited: No

-ro-barcode-checkdigit-mode

Defines how checkdigits are calculated. This property only applies to certain barcode types.

Value: none | mod10 | mod1010 | mod11 | mod1110 | mod43 | crc8

Initial: none

Inherited: No

-ro-barcode-color

Defines the color in which the barcode is rendered.

Value: <color>

Initial: black

Inherited: No

-ro-barcode-composite-content

Sets the content to be encoded in the linear part of a GS1 composite barcode. If no composite content is defined, the
barcode content is used.

Value: auto | <string>

Initial: auto

Inherited: No

-ro-barcode-composite-type

Defines the barcode type of the linear part of a GS1 Composite barcode.
Only certain barcode types are allowed.

www.pdfreactor.com

E.9.1 Properties

271

Value: code128 | [databar [stacked | omnidirectional-stacked | expanded | expanded-stacked |
limited]?] | [databar-expanded stacked?] | databar-limited | ean-8 | upc-a | upc-e

Initial: code128

Inherited: No

-ro-barcode-content

Defines the data which will be encoded within the barcode.

Value: auto | <string> | <url>

Initial: auto

Inherited: No

auto

Encodes the value of the href attribute of the replaced element and resolves its URL when possible. If the href
attribute is not set, the text content of the element is used.

string

Encodes the passed string as is.

url

Encodes the URL, relative URLs are resolved according to the documents base URL.

-ro-barcode-ecc-level

Defines how much of a barcode's capacity is used to store error correction data.
Whether this property is applied and its allowed values depend on the used barcode type.

Value: auto | <integer> | L | M | Q | H

Initial: auto

Inherited: No

auto

Use the default ecc level.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

272

-ro-barcode-encoding

Defines how the data contained within a barcode should be encoded. This property might be ignored, depending on the
barcode type.

Value: auto | eci | hibc | gs1

Initial: auto

Inherited: No

-ro-barcode-font-family

Defines the font family to be used in the human readable text of a barcode.

Value: <'font-family'>

Initial: sans-serif

Inherited: No

-ro-barcode-font-size

Sets the default font size for the human readable text.

Value: <'font-size'>

Initial: 8pt

Inherited: No

-ro-barcode-human-readable-affix

Defines the affixes at the beginning and end of the human readable text.
One value sets both affixes.
Whether this property is applied and its behavior depends on the used barcode type.

Value: none | [<string> <string>?]

Initial: none

Inherited: No

-ro-barcode-human-readable-position

Defines the position and alignment of the human readable text or removes it.

www.pdfreactor.com

E.9.1 Properties

273

This property only applies to certain barcode types.

Value: [[top | bottom] || [left | center | right]] | none

Initial: bottom center

Inherited: No

-ro-barcode-letter-spacing

This property specifies spacing behavior between characters in human readable text of barcodes

Value: normal | <length>

Initial: normal

Inherited: No

-ro-barcode-reader-initialization

Defines whether reader initialization instructions should be added to the barcode. This property only applies to certain
barcode types.

Value: enabled | disabled

Initial: disabled

Inherited: No

-ro-barcode-size

Defines the size of a barcode. Which values are allowed depends on the used barcode type. The second integer only
applies to PDF417 barcodes, setting their columns and rows.

Value: auto | [<integer>{1,2} || [<length> | <percentage>]]

Initial: auto

Inherited: No

<integer>

Size value of the barcode.

auto

Use the default size.

<length-percentage>

Sets the bar length of 1D barcodes.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

274

-ro-barcode-structured-append

Defines a structured series, the first value sets the total number of barcodes belonging to the series, the second value
defines the ID of the series. This property only applies to certain barcode types.

Value: none | [<integer> [<string> | <integer>]?]

Initial: none

Inherited: No

-ro-barcode-structured-append-position

Defines the position of a barcode within a structured series. This property only applies to certain barcode types.

Value: none | <integer>

Initial: none

Inherited: No

-ro-barcode-symbol-width

Defines the module size or bar width of a barcode depending on its type.

Value: auto | <length>

Initial: auto

Inherited: No

<length>

The module size or bar width.

auto

Use the default size of the respective barcode type

www.pdfreactor.com

E.9.1 Properties

275

-ro-barcode-type

Defines the type of barcode to be drawn. The second identifier selects the subtype.

Value: <barcode-type>

Initial: qrcode

Inherited: No

bleed

Specifies the width of the bleed area around the TrimBox. This implicitly defines the size of the BleedBox. Twice the bleed
width added up on the width and height of the TrimBox' (twice for both sides of the TrimBox).

Value: auto | <length>

Initial: auto

Applies To: @page

Inherited: No

auto

There is no bleed area round the TrimBox, except when crop marks are enabled, which causes a bleed width of
6pt.

<length>

The length of the bleed area on each side of the TrimBox.

￭ See also: size

￭ More information: PDF Page Boxes (p. 149)

-ro-bleed-mark-length

Sets the length of the bleed mark.

Value: auto | <length>

Initial: auto

Applies To: @page

Inherited: No

auto

Computes the length automatically and lets the bleed mark always end at the media box.

<length>

The absolute length of the bleed mark. Negative values are not allowed. A length of zero disables the bleed mark.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

276

-ro-bleed-mark-offset

Specifies the gap between the bleed box and the bleed mark. Negative values are not allowed.

Value: <length>

Initial: 0

Applies To: @page

Inherited: No

<length>

Specifies the gap as an absolute length.

block-size
inline-size

These properties set width and height based on the logical directions (depending on text direction).
The property 'block-size' set the height, while 'inline-size' sets the width.

Value: <'width'>

Initial: auto

Applies To: Same as 'width', 'height'

Inherited: No

￭ MDN documentation: block-size, inline-size

￭ See also: height , width

bookmark-label

Defines the text content of a bookmark, i.e. the title as it appears in a PDF reader's outline. For more details on the
values, please see the documentation of 'string-set'.

Value: [<string> | <named-string> | <quote> | counter() | counters() | content() | target-text() |
target-counters() | target-counter()]+

Initial: content(text)

Inherited: No

￭ See also: string-set

www.pdfreactor.com

E.9.1 Properties

277

https://developer.mozilla.org/en-US/docs/Web/CSS/block-size
https://developer.mozilla.org/en-US/docs/Web/CSS/inline-size

bookmark-level

Using this property, one can structure the specified elements within the bookmark view of the PDF viewer. The elements
are ordered in ascending order. The element with the lowest bookmark level is on top of the bookmark hierarchy (similar
to HTML headlines).

Value: none | <integer>

Initial: none

Inherited: No

none

Do not create a bookmark.

<integer>

An integer greater than 0, that indicates the level of the bookmark.

￭ See also: -ro-destination-area

bookmark-state

This property defines whether a bookmark should be opened, thus showing the next level of bookmarks. If set to closed,
the bookmark's descendants are initially hidden.

Value: open | closed

Initial: open

Applies To: block-level elements

Inherited: No

open

The bookmark is opened by default, showing the bookmarks of the next level.

closed

The bookmark is closed by default, hiding the bookmarks of the next level.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

278

-ro-bookmarks-enabled

This property allows to enable or disable PDF bookmarks for the content inside an iframe.
If the iframe is seamless, this property is set to true by default.

Value: true | false

Initial: false

Applies To: iframe

Inherited: No

￭ More information: iframes (p. 78)

border

This property is a shorthand property for setting the same width, color, and style for all four borders of a box.

Value: <line-width> || <line-style> || <color>

Initial: see individual properties

Inherited: No

￭ MDN documentation: border

￭ See also: border-color , border-style , border-width

border-block
border-inline

These properties set borders based on the logical directions (depending on text direction). Block direction is top and
bottom, inline direction is left and right.

Value: <border-width> || <border-style> || <color>

Initial:

Inherited: No

￭ MDN documentation: border-block, border-inline

www.pdfreactor.com

E.9.1 Properties

279

https://developer.mozilla.org/en-US/docs/Web/CSS/border
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline

border-block-color
border-inline-color

These properties set border colors based on the logical directions (depending on text direction).
The first value of border-block-color represents the top edge style, and the second value represents the bottom edge
style. The values of border-inline-color represent the left and right edge style in BiDi-dependent order. If only one value is
given, it applies to both the start and end edges.

Value: <color>{1,2}

Initial:

Inherited: No

￭ MDN documentation: border-block-color, border-inline-color

￭ More information: Text Direction Dependent Layouts (p. 162)

border-block-style
border-inline-style

These properties set border styles based on the logical directions (depending on text direction). The first value of border-
block-style represents the top edge style, and the second value represents the bottom edge style. The values of border-
inline-style represent the left and right edge style in BiDi-dependent order. If only one value is given, it applies to both the
start and end edges.

Value: <border-style>{1,2}

Initial: see individual properties

Inherited: No

￭ MDN documentation: border-block-style, border-inline-style

￭ More information: Text Direction Dependent Layouts (p. 162)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

280

https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-style

border-block-width
border-inline-width

These properties set border widths based on the logical directions (depending on text direction). The first value of -width
represents the top edge style, the second value represents the bottom edge style. The values of border-inline-width
represent the left and right edge style in BiDi-dependent order. If only one value is given, it applies to both the start and
end edges.

Value: <border-width>{1,2}

Initial:

Inherited: No

￭ MDN documentation: border-block-width, border-inline-width

￭ More information: Text Direction Dependent Layouts (p. 162)

border-bottom-left-radius
border-bottom-right-radius
border-top-left-radius
border-top-right-radius

The two length or percentage values of the 'border-*-radius' properties define the radii of a quarter ellipse that defines the
shape of the corner of the outer border edge.

Value: [<length> | <percentage>]{1,2}

Initial: 0

Applies To: all elements (but see prose)

Inherited: No

￭ MDN documentation: border-bottom-left-radius, border-bottom-right-radius, border-top-left-radius, border-
top-right-radius

￭ See also: border-radius

www.pdfreactor.com

E.9.1 Properties

281

https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-left-radius
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-right-radius
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-left-radius
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-right-radius

border-collapse

This property selects a table's border model.

Value: collapse | separate

Initial: separate

Applies To: 'table' and 'inline-table' elements

Inherited: Yes

￭ MDN documentation: border-collapse

border-color

The 'border-color' property sets the color of the four borders.

Value: [<color>]{1,4}

Initial: see individual properties

Inherited: No

￭ MDN documentation: border-color

￭ See also: border-*-color

￭ More information: CSS Color Keywords (p. 251)

border-inline-start
border-inline-end
border-block-start
border-block-end

These properties set borders based on the logical directions (depending on text direction). Block start and end
correspond to top and bottom. Inline start and end correspond to left and right or right and left, depending on the BiDi text
direction.

Value: <border-width> || <border-style> || <color>

Initial: see individual properties

Inherited: No

￭ MDN documentation: border-inline-start, border-inline-end, border-block-start, border-block-end

￭ See also: border-top, border-right, border-bottom, border-left

￭ More information: Text Direction Dependent Layouts (p. 162)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

282

https://developer.mozilla.org/en-US/docs/Web/CSS/border-collapse
https://developer.mozilla.org/en-US/docs/Web/CSS/border-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-start
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-end
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-start
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-end

border-inline-start-color
border-inline-end-color
border-block-start-color
border-block-end-color

These properties set border colors based on the logical directions (depending on text direction).
Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left,
depending on the BiDi text direction.

Value: <color>

Initial: currentColor

Inherited: No

￭ MDN documentation: border-inline-start-color, border-inline-end-color, border-block-start-color, border-
block-end-color

￭ See also: border-*-color

￭ More information: Text Direction Dependent Layouts (p. 162)

border-inline-start-style
border-inline-end-style
border-block-start-style
border-block-end-style

These properties set border styles based on the logical directions (depending on text direction).
Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left,
depending on the BiDi text direction.

Value: <border-style>

Initial: none

Inherited: No

￭ MDN documentation: border-inline-start-style, border-inline-end-style, border-block-start-style, border-
block-end-style

￭ See also: border-*-style

￭ More information: Text Direction Dependent Layouts (p. 162)

www.pdfreactor.com

E.9.1 Properties

283

https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-start-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-end-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-start-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-end-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-start-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-end-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-start-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-end-style

border-inline-start-width
border-inline-end-width
border-block-start-width
border-block-end-width

These properties set border widths based on the logical directions (depending on text direction).
Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left,
depending on the BiDi text direction.

Value: <border-width>

Initial: medium

Inherited: No

￭ MDN documentation: border-inline-start-width, border-inline-end-width, border-block-start-width, border-
block-end-width

￭ See also: border-*-width

￭ More information: Text Direction Dependent Layouts (p. 162)

-ro-border-length

Defines the length of a top border starting from the left (or the right if direction is right-to-left).

Value: <percentage> | <length> | auto

Initial: auto

Inherited: No

border-radius

The 'border-radius' shorthand sets all four 'border-*-radius' properties.

Value: [<length> | <percentage>]{1,4} [/ [<length> | <percentage>]{1,4}]?

Initial: see individual properties

Applies To: all elements (but see prose)

Inherited: No

￭ MDN documentation: border-radius

￭ See also: border-*-radius

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

284

https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-start-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-inline-end-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-start-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-block-end-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-radius

border-spacing

The lengths specify the distance that separates adjoining cell borders.

Value: <length> <length>?

Initial: 0

Applies To: 'table' and 'inline-table' elements

Inherited: Yes

￭ MDN documentation: border-spacing

border-start-start-radius
border-start-end-radius
border-end-start-radius
border-end-end-radius

These properties set border radii based on the logical directions (depending on text direction).
The mapping depends on the BiDi text direction of the element. The properties border-start-start-radius and border-start-
end-radius always map to the styles for the top, border-end-start-radius and border-end-end-radius always to the styles
for the bottom of the element.

Value: [<length> | <percentage>]{1,2}

Initial: 0

Inherited: No

￭ See also: border-*-radius

￭ More information: Text Direction Dependent Layouts (p. 162)

border-style

The 'border-style' property sets the style of the four borders. It can have from one to four component values, and the
values are set on the different sides as for 'border-width'.

Value: <border-style>{1,4}

Initial: see individual properties

Inherited: No

￭ MDN documentation: border-style

￭ See also: border-*-style

www.pdfreactor.com

E.9.1 Properties

285

https://developer.mozilla.org/en-US/docs/Web/CSS/border-spacing
https://developer.mozilla.org/en-US/docs/Web/CSS/border-style

border-top
border-right
border-bottom
border-left

This is a shorthand property for setting the width, style, and color of the top, right, bottom, and left border of a box.

Value: <border-width> || <border-style> || <color>

Initial: see individual properties

Inherited: No

￭ MDN documentation: border-top, border-right, border-bottom, border-left

￭ See also: border-*-* , border-*-color , border-*-style , border-*-width

border-top-color
border-right-color
border-bottom-color
border-left-color

The 'border-*-color' properties set the color of the specified border.

Value: <color>

Initial: currentColor

Inherited: No

￭ MDN documentation: border-top-color, border-right-color, border-bottom-color, border-left-color

￭ See also: border-*-*-color

￭ More information: CSS Color Keywords (p. 251)

border-top-style
border-right-style
border-bottom-style
border-left-style

The border style properties specify the line style of a box's border (solid, double, dashed, etc.). The properties defined in
this section refer to the <border-style> value type, which may take one of the following values:

Value: <border-style>

Initial: none

Inherited: No

￭ MDN documentation: border-top-style, border-right-style, border-bottom-style, border-left-style

￭ See also: border-*-*-style

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

286

https://developer.mozilla.org/en-US/docs/Web/CSS/border-top
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-color
https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-style
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-style

border-top-width
border-right-width
border-bottom-width
border-left-width

The border width properties specify the width of the border area.

Value: <border-width>

Initial: medium

Inherited: No

￭ MDN documentation: border-top-width, border-right-width, border-bottom-width, border-left-width

￭ See also: border-*-*-width

border-width

This property is a shorthand property for setting 'border-top-width', 'border-right-width', 'border-bottom-width', and
'border-left-width' at the same place in the style sheet.

Value: <border-width>{1,4}

Initial: see individual properties

Inherited: No

￭ MDN documentation: border-width

￭ See also: border-*-width

bottom

Like 'top', but specifies how far a box's bottom margin edge is offset above the bottom of the box's containing block. For
relatively positioned boxes, the offset is with respect to the bottom edge of the box itself.

Value: <length> | <percentage> | auto

Initial: auto

Applies To: positioned elements

Inherited: No

￭ MDN documentation: bottom

￭ See also: inset-*

www.pdfreactor.com

E.9.1 Properties

287

https://developer.mozilla.org/en-US/docs/Web/CSS/border-top-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-right-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-bottom-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-left-width
https://developer.mozilla.org/en-US/docs/Web/CSS/border-width
https://developer.mozilla.org/en-US/docs/Web/CSS/bottom

box-decoration-break

When a block is split, this property determines whether margins, borders and paddings wrap the edges of the split box or
if they should be "sliced".
If a block has a background, this property determines whether the background is "sliced".

Value: slice | clone

Initial: slice

Applies To: all elements

Inherited: No

￭ MDN documentation: box-decoration-break

box-shadow

Applies one or more rectangular shadows to a box.

Value: none | [inset? && <length>{2,4} && <color>?]#

Initial: none

Inherited: No

￭ MDN documentation: box-shadow

box-sizing

Defines which box is used to calculate the widths and heights of elements.

Value: content-box | border-box

Initial: content-box

Applies To: all elements that accept width or height

Inherited: No

￭ MDN documentation: box-sizing

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

288

https://developer.mozilla.org/en-US/docs/Web/CSS/box-decoration-break
https://developer.mozilla.org/en-US/docs/Web/CSS/box-shadow
https://developer.mozilla.org/en-US/docs/Web/CSS/box-sizing

break-before
break-after

These properties describe page/column/region break behavior before/after the element's box.

Value: auto | always | avoid | left | right | verso | recto | page | column | region | avoid-page | avoid-
column | avoid-region

Initial: auto

Applies To: block-level elements

Inherited: No

￭ MDN documentation: break-before, break-after

￭ More information: Controlling Breaks (p. 146)

break-inside

This property describes the page/column/region break behavior inside the element's box.

Value: auto | avoid | avoid-page | avoid-column | avoid-region

Initial: auto

Applies To: block-level elements

Inherited: No

￭ MDN documentation: break-inside

￭ More information: Controlling Breaks (p. 146)

caption-side

This property specifies the position of the caption box with respect to the table box. In order to ensure that top caption is
on the first page, it should be the table's first child. If the caption should be on the last page, place the caption as the
table's last child.

Value: top | bottom

Initial: top

Applies To: 'table-caption' elements

Inherited: Yes

￭ MDN documentation: caption-side

www.pdfreactor.com

E.9.1 Properties

289

https://developer.mozilla.org/en-US/docs/Web/CSS/break-before
https://developer.mozilla.org/en-US/docs/Web/CSS/break-after
https://developer.mozilla.org/en-US/docs/Web/CSS/break-inside
https://developer.mozilla.org/en-US/docs/Web/CSS/caption-side

-ro-change-bar

Shorthand property to set all change bar properties.

Value: none | [<color> || <'-ro-change-bar-align'> || [<'-ro-change-bar-offset'> <'-ro-change-bar-
width'>?]] [/ <'-ro-change-bar-name'>]?

Initial:

Inherited: No

￭ More information: Change Bars (p. 175)

-ro-change-bar-align

Specifies at which horizontal base position a change bar should appear, e.g. on which side of a page.

Value: [start | end | left | right | inside | outside] || [[page || distribute-column] | column]

Initial: start page

Inherited: No

start

The change bar is positioned to the left for left-to-right documents or to the right for right-to-left documents. This is
the default direction.

end

The change bar is positioned to the right for left-to-right documents or to the left for right-to-left documents.

left

The change bar is positioned to the left.

right

The change bar is positioned to the right.

inside

The change bar is positioned on the side that would be the inside of a book, i.e. on the right for left pages and on
the left for right pages.

outside

The change bar is positioned on the side that would be the outside of a book, i.e. on the left for left pages and on
the right for right pages.

distribute-column

This only works if the change bars are set to be placed on the page. Optional setting that enables a special
behavior of change bars for elements in multi-column contexts, where they are placed on the page side that is
closer to its respective column. If the distance is equal, the specified direction is used.

page

Sets that the base position of the change bars should always be the page margin. This is default behavior.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

290

column

If set and the change bar creating element is inside a multi-column context, the change bar is rendered next to the
column instead of inside the page margin.

￭ See also: -ro-change-bar-color

￭ More information: Change Bars (p. 175)

-ro-change-bar-color

Enables a change bar of the specified color that appears next to the matching elements (usually in the page margin). For
other settings like width or position of the change bar, see the respective change bar properties.

Value: none | <color>

Initial: none

Inherited: No

none

There is no change bar for this element.

<color>

A change bar of the specified color is created for this element.

￭ See also: -ro-change-bar-align , -ro-change-bar-offset , -ro-change-bar-width

￭ More information: Change Bars (p. 175)

-ro-change-bar-exclusion

Specifies the names of change bars that may not be painted on the height of this element. Multiple names may be
specified to block change bars of different names. Setting the value 'all' blocks all change bars, including those without
names.

Value: none | all | <identifier>#

Initial: none

Inherited: No

￭ More information: Change Bars (p. 175)

www.pdfreactor.com

E.9.1 Properties

291

-ro-change-bar-name

Defines a name for the change bar that is described on this element so that it can be addressed by the -ro-change-bar-
exclusion property. Different change bars may share the same name.

Value: none | <identifier>

Initial: none

Inherited: No

￭ See also: -ro-change-bar-exclusion

￭ More information: Change Bars (p. 175)

-ro-change-bar-offset

Specifies the horizontal gap between a change bar and the respective container's edge. Percentages are resolved
against either the margin width of the corresponding side or, in the case of change bars in multi-column elements, against
the column gap width. The offset is directed outwards (i.e. away from the content creating it), but negative values are
allowed.

Value: <length> | <percentage>

Initial: 25%

Inherited: No

￭ See also: -ro-change-bar-color

￭ More information: Change Bars (p. 175)

-ro-change-bar-width

Specifies the width of the change bar if one is created via setting a change bar color on the matching element.

Value: <border-width>

Initial: medium

Inherited: No

￭ See also: -ro-change-bar-color

￭ More information: Change Bars (p. 175)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

292

clear

This property indicates which sides of an element's box(es) may not be adjacent to an earlier floating box. The 'clear'
property does not consider floats inside the element itself or in other block formatting contexts.

Value: none | left | right | inline-start | inline-end | both

Initial: none

Inherited: No

￭ MDN documentation: clear

clip

A clipping region defines what portion of an element's border box is visible. By default, the element is not clipped.
However, the clipping region may be explicitly set with the 'clip' property.

Value: <shape> | auto

Initial: auto

Applies To: absolutely positioned elements

Inherited: No

auto

The element does not clip.

<shape>

In CSS 2.1, the only valid <shape> value is: rect(<top>, <right>, <bottom>, <left>) where <top> and <bottom>
specify offsets from the top border edge of the box, and <right>, and <left> specify offsets from the left border
edge of the box. Authors should separate offset values with commas. <top>, <right>, <bottom>, and <left> may
either have a <length> value or 'auto'. Negative lengths are permitted. The value 'auto' means that a given edge of
the clipping region will be the same as the edge of the element's generated border box (i.e., 'auto' means the same
as '0' for <top> and <left>, the same as the used value of the height plus the sum of vertical padding and border
widths for <bottom>, and the same as the used value of the width plus the sum of the horizontal padding and
border widths for <right>, such that four 'auto' values result in the clipping region being the same as the element's
border box).

￭ MDN documentation: clip

www.pdfreactor.com

E.9.1 Properties

293

https://developer.mozilla.org/en-US/docs/Web/CSS/clear
https://developer.mozilla.org/en-US/docs/Web/CSS/clip

clip-path

This property creates a clipping region that sets what part of an element should be shown. Parts that are inside the region
are shown, while those outside are hidden.

Value: <clip-source> | [<basic-shape> || <geometry-box>] | none

Initial: none

Inherited: No

clip-source

An URL to the <clipPath> element within an SVG which outlines the shape to be clipped.

basic shape

A CSS function describing a shape as defined in the CSS Shapes module. This can be inset(), circle(), ellipse(), or
polygon().

geometry box

If used in combination with a basic shape, it provides the reference box according to which the shape is drawn. If
used by itself, the edges of the specified box are used, including any corner shaping. Valid values are: border-box,
padding-box, content-box, margin-box, fill-box, stroke-box and view-box. For elements with associated CSS layout
box, the used value for fill-box is content-box and for stroke-box and view-box is border-box.

￭ MDN documentation: clip-path

color

This property describes the foreground color of an element's text content.

Value: <color>

Initial: black

Inherited: Yes

￭ MDN documentation: color

￭ More information: CSS Color Keywords (p. 251)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

294

https://developer.mozilla.org/en-US/docs/Web/CSS/clip-path
https://developer.mozilla.org/en-US/docs/Web/CSS/color

-ro-colorbar-offset

Specifies the gap between the trim box and the color bars. Negative values are not allowed.

Value: <length> | <percentage>

Initial: 100%

Applies To: @page

Inherited: No

<length>

Specifies the gap as an absolute length.

<percentage>

Specifies the gap as a percentage value relative to the bleed. A value of 100% positions the inner side of the color
bar exactly at the outer edge of the bleed.

-ro-colorbar-top-left
-ro-colorbar-top-right
-ro-colorbar-bottom-left
-ro-colorbar-bottom-right
-ro-colorbar-left-top
-ro-colorbar-left-bottom
-ro-colorbar-right-top
-ro-colorbar-right-bottom

Color bars for print layout in oversized pages.

Value: gradient-tint | progressive-color | [<color>]+ | none

Initial: none

Applies To: @page

Inherited: No

gradient-tint

Defines a set of 11 grayscale colors, starting with a CMYK value of 0% each and raising the cyan, magenta and
yellow values by 10% on every step.

progressive-color

Defines a set including solid process colors (cyan, magenta, yellow, black), solid overprint colors (cyan & magenta,
cyan & yellow, magenta & yellow) and a 50% tint of each of the process colors.

[<color>]+

One or more colors which will be sequentially painted from left to right or from top to bottom respectively.

￭ More information: Printer Marks (p. 151), CSS Color Keywords (p. 251)

www.pdfreactor.com

E.9.1 Properties

295

-ro-column-clip

Allows to restore the legacy behavior that clipped content inside a multi-column element at the middle of its column-gap,
so that it would not overflow into the next column.

Value: none | auto

Initial: none

Applies To: multicol containers

Inherited: No

none

The browser behavior, as described by the CSS specifications. Content inside a column may overflow into the next
column.

auto

The legacy behavior, as it was described in earlier versions of the CSS specifications. Content inside the columns
is clipped horizontally, if it would overflow into the next column.

column-count

This property specifies the number of columns of a multi-column element. Numbers below 1 are invalid. If the property
column-width is also set to a non-auto value, the property that leads to fewer columns takes precedence.

Value: <integer> | auto

Initial: auto

Applies To: block containers

Inherited: No

￭ MDN documentation: column-count

￭ See also: column-width

￭ More information: Multi-column Layout (p. 140)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

296

https://developer.mozilla.org/en-US/docs/Web/CSS/column-count

column-fill

In continuous media, this property will only be consulted if the length of columns has been constrained. Otherwise,
columns will automatically be balanced.

Value: balance | balance-all | auto

Initial: balance

Applies To: multicol elements

Inherited: No

￭ MDN documentation: column-fill

￭ More information: Multi-column Layout (p. 140)

column-gap
grid-column-gap

The 'column-gap' property sets the gap between columns. If there is a column rule between columns, it will appear in the
middle of the gap.

Value: <length> | <percentage> | normal

Initial: normal

Applies To: multi-column containers and grid containers

Inherited: No

￭ MDN documentation: column-gap

￭ More information: Multi-column Layout (p. 140)

www.pdfreactor.com

E.9.1 Properties

297

https://developer.mozilla.org/en-US/docs/Web/CSS/column-fill
https://developer.mozilla.org/en-US/docs/Web/CSS/column-gap

column-rule

This property is a shorthand for setting 'column-rule-width', 'column-rule-style', and 'column-rule-color' at the same place
in the style sheet. Omitted values are set to their initial values.

Value: <'column-rule-width'> || <'column-rule-style'> || [<'column-rule-color'>]

Initial: see individual properties

Applies To: multicol elements

Inherited: No

￭ MDN documentation: column-rule

￭ See also: column-rule-color , column-rule-style , column-rule-width

￭ More information: Multi-column Layout (p. 140)

column-rule-color

This property sets the color of the column rule.

Value: <color> | none

Initial: currentColor

Applies To: multicol elements

Inherited: No

￭ MDN documentation: column-rule-color

￭ More information: Multi-column Layout (p. 140), CSS Color Keywords (p. 251)

column-rule-style

The 'column-rule-style' property sets the style of the rule between columns of an element. The <border-style> values are
defined in CSS2.1 and the values are interpreted as in the collapsing border model.

Value: <border-style> | none

Initial: none

Applies To: multicol elements

Inherited: No

￭ MDN documentation: column-rule-style

￭ See also: border-style

￭ More information: Multi-column Layout (p. 140)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

298

https://developer.mozilla.org/en-US/docs/Web/CSS/column-rule
https://developer.mozilla.org/en-US/docs/Web/CSS/column-rule-color
https://developer.mozilla.org/en-US/docs/Web/CSS/column-rule-style

column-rule-width

This property sets the width of the rule between columns. Negative values are not allowed.

Value: <border-width> | <percentage> | none

Initial: medium

Applies To: multicol elements

Inherited: No

￭ MDN documentation: column-rule-width

￭ See also: border-width

￭ More information: Multi-column Layout (p. 140)

column-span

This property describes how many columns an element spans across.

Value: none | all

Initial: none

Applies To: block-level elements, except floating and absolutely positioned elements

Inherited: No

￭ MDN documentation: column-span

￭ More information: Multi-column Layout (p. 140)

column-width

This property specifies the width of columns in multi-column elements. Negative lengths are invalid. Lengths below 1px
are treated as 1px. If the property column-count is also set to a non-auto value, the property that leads to fewer columns
takes precedence.

Value: <length> | auto

Initial: auto

Applies To: block containers

Inherited: No

￭ MDN documentation: column-width

￭ See also: column-count

￭ More information: Multi-column Layout (p. 140)

www.pdfreactor.com

E.9.1 Properties

299

https://developer.mozilla.org/en-US/docs/Web/CSS/column-rule-width
https://developer.mozilla.org/en-US/docs/Web/CSS/column-span
https://developer.mozilla.org/en-US/docs/Web/CSS/column-width

columns

This is a shorthand property for setting 'column-width' and 'column-count'. Omitted values are set to their initial values.

Value: [<length> | auto] || [<integer> | auto]

Initial: see individual properties

Applies To: block containers

Inherited: No

￭ MDN documentation: columns

￭ See also: column-count , column-width

￭ More information: Multi-column Layout (p. 140)

-ro-comment-color

Specifies the color of the comment.

Value: auto | <color>

Initial: auto

Inherited: No

auto

The color depends on the value of the '-ro-comment-style' property: '-ro-comment-highlight' for 'note' and
'highlight', '-ro-comment-underline' for 'underline' and 'squiggly', '-ro-comment-strikeout' for 'strikeout'

<color>

The color of the comment.

￭ More information: Comments (p. 172), CSS Color Keywords (p. 251)

-ro-comment-content

Specifies the content of a comment.

Value: none | [<string> | content()]+

Initial: none

Inherited: No

none

The comment receives no content.

<string>

Defines the content of the comment.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

300

https://developer.mozilla.org/en-US/docs/Web/CSS/columns

content()

Defines the content of the comment from the content of the element.

￭ More information: Comments (p. 172)

-ro-comment-date

Specifies the date of the comment.

Value: auto | <string>

Initial: auto

Inherited: No

auto

The date of the comment is the current date.

<string>

The date of the comment, formatted according to the value of the "-ro-comment-dateformat" property.

￭ More information: Comments (p. 172)

-ro-comment-dateformat

The format wich is applied to the string value of the "-ro-comment-date" property. The format of this value is similar to the
Java SimpleDateFormat class.
The initial value is the ISO date format.

Value: <string>

Initial: "yyyy-MM-dd'T'kk:mm:ss"

Inherited: No

<string>

The date format for the comment.

￭ More information: Comments (p. 172)

www.pdfreactor.com

E.9.1 Properties

301

-ro-comment-position

The position of the note icon of the comment. This property is only applicable when the value of the property "-ro-
comment-style" is set to note.

Value: auto | page-left | page-right

Initial: auto

Inherited: No

page-left

Shifts the note icon to the left side of the page.

page-right

Shifts the note icon to the right side of the page.

auto

The note icon is placed next to the commented text.

￭ More information: Comments (p. 172)

-ro-comment-start
-ro-comment-end

Specifies the start or end elements which encompass commented text. Both properties have to be specified on the
respective element to link the start element of the comment with the end element.

Value: none | [<string> [<string>]?]

Initial: none

Inherited: No

none

The element is not a comment start or end element.

<string>

A unique identifier which links start and end element.

[<string>]

An optional second identifier to link start and end properties. This should only be used if the unique identifier is not
unique for all elements but only for certain elements.

￭ More information: Comments (p. 172)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

302

-ro-comment-state

The initial state of the comment bubbles displayed by the viewer. This property only affects certain PDF viewers.

Value: open | closed

Initial: closed

Inherited: No

open

All comment bubbles will be opened and displayed when the document is opened in the PDF viewer.

closed

All comment bubbles will be closed when the document is opened in the PDF viewer.

￭ More information: Comments (p. 172)

-ro-comment-style

Specifies the style of the comment.

Value: note | highlight | underline | strikeout | squiggly | invisible

Initial: note

Inherited: No

note

Displays the comment as a note icon.

highlight

Highlights the background of the comment area in a certain color.

underline

Underlines the text of the comment area with a straight line.

strikeout

Strikes out the text of the comment area.

squiggly

Underlines the text of the comment area with a squiggly line.

invisible

Does not visualize the comment in any way.

￭ More information: Comments (p. 172)

www.pdfreactor.com

E.9.1 Properties

303

-ro-comment-title

Specifies the title or author of the comment.

Value: none | <string>

Initial: none

Inherited: No

none

The comment receives no title.

<string>

Defines the title of the comment.

￭ More information: Comments (p. 172)

content

This property is used with the :before and :after pseudo-elements to generate content in a document.

Value: normal | none | [<string> | <named-string> | <uri> | <gradient> | <quote> | counter() | -ro-
counter-offset() | counters() | content() | target-text() | target-counters() | target-counter() |
-ro-target-counter-offset() | leader()]+ | <running-element> | <running-document>

Initial: normal

Applies To: :before and :after pseudo-elements as well as page-margin boxes

Inherited: No

<named-string> ☛

Named strings may be specified with the function: 'string()'. The string function has two arguments. The name of
the named string as identifier and the location on the page (which is optional).

<running-element> ☛

Running Elements may be specified with the function: 'element()' from a position property. The element function
has two arguments. The name of the running element as identifier and the location on the page (which is optional).

<running-document> ☛

Running documents may be specified with the proprietary function 'xhtml()', which takes an HTML string or a URL
function.

￭ MDN documentation: content

￭ See also: -ro-counter-offset , -ro-target-counter-offset

￭ More information: Generated Content (p. 120), Page Header & Footer (p. 124), Generated Content for
Pages (p. 129)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

304

https://developer.mozilla.org/en-US/docs/Web/CSS/content

counter-increment

The 'counter-increment' property increases or decreases the value of counters.

Value: none | [<identifier> <integer>?]+

Initial: none

Inherited: No

￭ MDN documentation: counter-increment

￭ More information: Counters (p. 122), Page Counters (p. 129)

counter-reset

The 'counter-reset' property sets a list of counters to a certain value.

Value: none | [<identifier> <integer>?]+

Initial: none

Inherited: No

￭ MDN documentation: counter-reset

￭ More information: Counters (p. 122), Page Counters (p. 129)

-ro-counter-set

The '-ro-counter-set' property contains a list of one or more names of counters, each one optionally followed by an
integer.
The integer gives the value that the counter is set to on each occurrence of the element. The default is 0.
The difference to the 'counter-reset' property is, that '-ro-counter-set' does not create a new instance of a counter if an
existing counter is present. This allows '-ro-counter-set' to reset an existing counter from anywhere inside the document.
In contrast to 'counter-set', the value of '-ro-counter-set' is still modified by a 'counter-increment' set on the same element.

Value: none | [<identifier> <integer>?]+

Initial: none

Inherited: No

￭ More information: Page Counters (p. 129)

www.pdfreactor.com

E.9.1 Properties

305

https://developer.mozilla.org/en-US/docs/Web/CSS/counter-increment
https://developer.mozilla.org/en-US/docs/Web/CSS/counter-reset

counter-set

The 'counter-set' property sets the value of an existing counter. In contrast to counter-reset, it will only create a new
counter scope, if it is used outside an existing one of the specified name.

Value: none | [<identifier> <integer>?]+

Initial: none

Inherited: No

￭ MDN documentation: counter-set

-ro-crop-mark-length

Sets the length of the crop mark.

Value: auto | <length>

Initial: auto

Applies To: @page

Inherited: No

auto

Computes the length automatically and lets the crop mark always end at the media box.

<length>

The absolute length of the crop mark. Negative values are not allowed. A length of zero disables the crop mark.

-ro-crop-mark-offset

Specifies the gap between the trim box and the crop mark. Negative values are not allowed.

Value: <length> | <percentage>

Initial: 100%

Applies To: @page

Inherited: No

<length>

Specifies the gap as an absolute length.

<percentage>

Specifies the gap as a percentage value relative to the bleed. A value of 100% positions the inner end point of the
crop mark exactly at the outer edge of the bleed.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

306

https://developer.mozilla.org/en-US/docs/Web/CSS/counter-set

-ro-crop-size

Specifies the size of the CropBox, one of the PDF page boxes.

Value: none | <length>{1,2} | [<page-size> || [portrait | landscape]] | media | trim | art

Initial: none

Applies To: @page

Inherited: No

none

The element does not specify a CropBox.

media

The CropBox is specified with the same dimensions as the MediaBox.

trim

The CropBox is specified with the same dimensions as the TrimBox.

art

The CropBox is specified with the same dimensions as the ArtBox.

￭ More information: PDF Page Boxes (p. 149)

-ro-destination-area

For elements targeted by bookmarks or internal links allows specifying how the coordinate to scroll to is determined.

Value: [self | expand | page] || [content-box | padding-box | border-box | margin-box | -ro-page-box
| -ro-bleed-box | auto] || [<length> <length>?]

Initial: auto

Inherited: No

self

The element itself is the target.

expand

A parent of the element, determined based on the structure, is the target. (default)

page

The page the element is on is the target.

content-box | padding-box | border-box | margin-box

The layout box of the target to get the top left coordinate from.

-ro-page-box | -ro-bleed-box

The page box of the target to get the top left coordinate from. Matches margin-box for non-page targets, unless the
target is a direct descendant of the page.

auto

Matches -ro-page-box for page targets and border-box otherwise. (default)

www.pdfreactor.com

E.9.1 Properties

307

<length>

Additional offset for the coordinate. May be negative. Using 2 lengths specifies x and y offsets separately. Defaults
to 6pt.

￭ See also: bookmark-level , -ro-link

￭ More information: Bookmarks (p. 90), Links (p. 91)

direction

This property specifies the base writing direction. Also effects horizontally arranged boxes, e.g. tables and flex, as well as
logical properties and values.

Value: ltr | rtl

Initial: ltr

Applies To: all elements

Inherited: Yes

￭ MDN documentation: direction

￭ See also: unicode-bidi

￭ More information: Right-to-Left (p. 161), Text Direction Dependent Layouts (p. 162)

display

The computed value is the same as the specified value, except for positioned and floating elements (see Relationships
between 'display', 'position', and 'float') and for the root element.
Note that although the initial value of 'display' is 'inline', rules in the user agent's default style sheet may override this
value.

Value: inline | block | list-item | inline-block | table | inline-table | table-row-group | table-column |
table-column-group | table-header-group | table-footer-group | table-row | table-cell | table-
caption | flex | inline-flex | grid | inline-grid | -ro-fast-table | none

Initial: inline

Applies To: all elements

Inherited: No

-ro-fast-table

This proprietary value is used to create very simple and fast tables. While these tables support only very basic
styles and require all rows to have the same height, they can be extremely large without having a significantly
impact on performance or memory consumption.

￭ MDN documentation: display

￭ More information: Fast Tables (p. 171)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

308

https://developer.mozilla.org/en-US/docs/Web/CSS/direction
https://developer.mozilla.org/en-US/docs/Web/CSS/display

empty-cells

In the separated borders model, this property controls the rendering of borders and backgrounds around cells that have
no visible content.

Value: show | hide

Initial: show

Applies To: 'table-cell' elements

Inherited: Yes

￭ MDN documentation: empty-cells

fallback

The fallback descriptor can be used to specify a counter style to fall back to if the current counter style cannot create a
marker representation for a particular counter value.

Value: <identifier>

Initial: decimal

Applies To: @counter-style

Inherited: No

￭ MDN documentation: fallback

filter

Allows to apply one or more graphical effects on an element. When doing so, the element is rasterized. The quality of the
resulting image can be customized via the proprietary property "-ro-rasterization-supersampling". Note that a higher
quality has a negative impact on performance and memory.

Value: [<filter-function>]+ | none

Initial: none

Inherited: No

￭ MDN documentation: filter

￭ See also: -ro-rasterization-supersampling

www.pdfreactor.com

E.9.1 Properties

309

https://developer.mozilla.org/en-US/docs/Web/CSS/empty-cells
https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/fallback
https://developer.mozilla.org/en-US/docs/Web/CSS/filter

first-page-side

Defines whether the first page of the document is a left or right page.

Value: left | right | verso | recto | auto

Initial: auto

Applies To: @-ro-preferences

Inherited: No

left

The first page is a left page.

right

The first page is a right page.

verso

Same as 'left', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of
'rtl', in which case it is the same as 'right'. This means that the first page is not a cover page.

recto

Same as 'right', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of
'rtl', in which case it is the same as 'left'. This means that the first page is a cover page.

auto

Same as 'recto', unless the root or body element has a 'break-before' value of 'left', 'right' or 'verso', in which case it
is the same as that value.

￭ See also: break-before, break-after , direction , first-page-side-view

￭ More information: Document-Specific Preferences (p. 168)

first-page-side-view

Defines whether the first page should appear to be left or a right page. In contrast to first-page-side, this property does
not influence the layout, only on which side the page is shown in the viewer application.

Value: left | right | verso | recto | auto

Initial: auto

Applies To: @-ro-preferences

Inherited: No

left

The first page is displayed left.

right

The first page is displayed right.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

310

verso

Same as 'left', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of
'rtl', in which case it is the same as 'right'. This means that the first page is not displayed as a cover page.

recto

Same as 'right', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of
'rtl', in which case it is the same as 'left'. This means that the first page is displayed as a cover page.

auto

Same as the used value of 'first-page-side'.

￭ See also: direction , first-page-side

￭ More information: Document-Specific Preferences (p. 168)

flex

Specifies the components of a flexible length: The grow factor, the shrink factor and the basis.

Value: none | [<'flex-grow'> <'flex-shrink'>? || <'flex-basis'>]

Initial: 1 0 auto

Applies To: flex items

Inherited: No

￭ MDN documentation: flex

￭ See also: flex-basis , flex-grow , flex-shrink

flex-basis

Sets the flex basis, which is used to determine the size of flex items (before growing or shrinking them).

Value: content | <'width'>

Initial: auto

Applies To: flex items

Inherited: No

￭ MDN documentation: flex-basis

www.pdfreactor.com

E.9.1 Properties

311

https://developer.mozilla.org/en-US/docs/Web/CSS/flex
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-basis

flex-direction

Specifies in which direction flex items are placed in the flex container.

Value: row | row-reverse | column | column-reverse

Initial: row

Applies To: flex containers

Inherited: No

￭ MDN documentation: flex-direction

flex-flow

Shorthand property for flex-direction and flex-wrap.

Value: <'flex-direction'> || <'flex-wrap'>

Initial: row nowrap

Applies To: flex containers

Inherited: Yes

￭ MDN documentation: flex-flow

￭ See also: flex-direction , flex-wrap

flex-grow

Sets the flex grow factor, which specifies in what ratio items grow to fill remaining space in a line.

Value: <number>

Initial: 0

Applies To: flex items

Inherited: No

￭ MDN documentation: flex-grow

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

312

https://developer.mozilla.org/en-US/docs/Web/CSS/flex-direction
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-flow
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-grow

flex-shrink

Sets the flex shrink factor, which specifies in what ratio the item shrinks when there is not enough space for all items in a
line.

Value: <number>

Initial: 1

Applies To: flex items

Inherited: No

￭ MDN documentation: flex-shrink

flex-wrap

Specifies if and how a flex line is broken, if an item does not fit in the line anymore.

Value: nowrap | wrap | wrap-reverse

Initial: nowrap

Applies To: flex containers

Inherited: No

￭ MDN documentation: flex-wrap

float

This property specifies whether a box should float to the left, right, or not at all. It also allows to to float it to the top or
bottom as a page float.

Value: none | left | right | inline-start | inline-end | -ro-top | -ro-bottom | footnote | -ro-sidenote()

Initial: none

Applies To: all elements

Inherited: No

-ro-sidenote() ☛

The element is taken out of flow and moved into a respective sidenote area, with its parameter defining whether
that is the left or right sidenote area. This value can not be applied to generated content.

￭ MDN documentation: float

￭ See also: position

￭ More information: Footnotes (p. 132), Page Floats (p. 148), Sidenotes (p. 134)

www.pdfreactor.com

E.9.1 Properties

313

https://developer.mozilla.org/en-US/docs/Web/CSS/flex-shrink
https://developer.mozilla.org/en-US/docs/Web/CSS/flex-wrap
https://developer.mozilla.org/en-US/docs/Web/CSS/float

-ro-float-offset

Defines a gap above top floats and below bottom floats respectively. Percentages are relative to the vertical space minus
the float's height. This means that 50% positions the float to the middle and 100% positions it at the other side (and thus
leaving no space for actual content).
The property is only applicable for page floats.

Value: <length> | <percentage>

Initial: 0

Applies To: page floats

Inherited: No

-ro-float-reference

Specifies on which fragmentainer (page, column or region) a footnote is placed. By default footnotes are placed on
pages.

Value: auto | column | region | page

Initial: auto

Applies To: Footnote calls

Inherited: No

auto

On which fragmentainer (page, column or region) a footnote is placed is determined automatically. The current
implementation always places footnotes on pages.

column

If the footnote call is located inside a multi-column element then the footnote is placed on the innermost column. If
the footnote call it is not located inside a multi-column element then the footnote is placed on a page.

region

If the footnote call is located inside a region element then the footnote is placed on the innermost region. If the
footnote call it is not located inside a region element then the footnote is placed on a page.

page

The footnote is placed on a page.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

314

-ro-flow-from

The 'flow-from' property makes a block container a region and associates it with a named flow.

Value: none | <identifier>

Initial: none

Applies To: Non-replaced block containers.

Inherited: No

none

The block container is not a CSS Region.

<identifier>

The block container becomes a CSS Region, and is ordered in a region chain according to its document order.

￭ More information: Region Layout (p. 144)

-ro-flow-into

The 'flow-into' property can place an element or its contents into a named flow.
Content that belongs to the same flow is laid out in regions associated with that flow.
The 'flow-into' property neither affects the CSS cascade and inheritance nor the DOM position of an element or its
contents.
A named flow needs to be associated with one or more regions to be displayed.

Value: none | <identifier> [element|content]?

Initial: none

Applies To: All elements, but not pseudo-elements such as ::first-line, ::first-letter, ::before or ::after.

Inherited: No

none

The element is not moved to a named flow and normal CSS processing takes place.

<identifier>

If the keyword 'element' or neither keyword is present, the element is taken out of its parent's flow and placed into
the named flow '<identifier>'. If the keyword 'content' is present, then only the element's contents is placed into the
named flow. The values 'none', 'inherit', 'default', 'auto' and 'initial' are invalid flow names.

￭ More information: Region Layout (p. 144)

www.pdfreactor.com

E.9.1 Properties

315

font

The 'font' property is a shorthand property for setting 'font-style', 'font-variant', 'font-weight', 'font-stretch', 'font-size', 'line-
height' and 'font-family' at the same place in the style sheet.

Value: ['font-style' || 'font-variant' || 'font-weight' || 'font-stretch']? 'font-size' [/ 'line-height']? 'font-
family'

Initial: see individual properties

Applies To: all elements and text

Inherited: No

￭ MDN documentation: font

￭ See also: font-family , font-size , font-stretch , font-style , font-variant , font-

weight , line-height

-ro-font-embedding-type

This property specifies how a font configured through a "@font-face" rule should be embedded in the resulting PDF. If the
font includes multiple subsets, PDFreactor can either only embed the subset from which glyphs are being used in the
document, the entire font incl. all subsets even if the document does not use glyphs from all subsets, or prevent the font
from being embedded at all.

Value: subset | all | none

Initial: subset

Applies To: @font-face

Inherited: No

subset

Only the subset or subsets that have glyphs being used in this document are embedded in the resulting PDF.

all

All subsets of this font are embedded, regardless of whether or not glyphs from these subsets are actually being
used.

none

The font is not embedded in the document at all, even if glyphs from this font are being used.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

316

https://developer.mozilla.org/en-US/docs/Web/CSS/font

font-family

The property value is a prioritized list of font family names and/or generic family names. Unlike most other CSS
properties, component values are separated by a comma to indicate that they are alternatives.

Value: [<family-name> | <generic-family>]#

Initial: serif

Applies To: all elements and text

Inherited: Yes

￭ MDN documentation: font-family

font-size

The font size corresponds to the em square, a concept used in typography. Note that certain glyphs may bleed outside
their em squares.

Value: <absolute-size> | <relative-size> | <length> | <percentage>

Initial: medium

Applies To: all elements and text

Inherited: Yes

￭ Types: <absolute-size> , <relative-size>

￭ MDN documentation: font-size

font-size-adjust

The font-size-adjust CSS property sets how the font size should be adjusted based on the proportions of lowercase
letters.

Value: <number> | none | -ro-from-font

Initial: none

Applies To: all elements and text

Inherited: Yes

-ro-from-font

Computes the x-height to font-size ratio of a particular font and sets it as the font-size-adjust value. This value will
be inherited. Improves readability by ensuring that lowercase letters of text with a different font or text with a font
fallback have the same height.

￭ MDN documentation: font-size-adjust

www.pdfreactor.com

E.9.1 Properties

317

https://developer.mozilla.org/en-US/docs/Web/CSS/font-family
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size
https://developer.mozilla.org/en-US/docs/Web/CSS/font-size-adjust

font-stretch

If a font-family offers additional faces with narrower (condensed) or wider (expanded) characters, this property can be
used to select the best matching font face.

Value: normal | ultra-condensed | extra-condensed | condensed | semi-condensed | semi-
expanded | expanded | extra-expanded | ultra-expanded

Initial: normal

Applies To: all elements and text

Inherited: Yes

￭ MDN documentation: font-stretch

font-style

The 'font-style' property selects between normal (sometimes referred to as "roman" or "upright"), italic and oblique faces
within a font family.

Value: normal | italic | oblique

Initial: normal

Applies To: all elements and text

Inherited: Yes

￭ MDN documentation: font-style

font-synthesis

This shorthand CSS property allows to set whether or not PDFreactor may synthesize the bold and/or italic typefaces
when they are missing in the specified font-family.

Value: none | [weight || style]

Initial: weight style

Applies To: All elements and text

Inherited: Yes

￭ MDN documentation: font-synthesis

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

318

https://developer.mozilla.org/en-US/docs/Web/CSS/font-stretch
https://developer.mozilla.org/en-US/docs/Web/CSS/font-style
https://developer.mozilla.org/en-US/docs/Web/CSS/font-synthesis

font-synthesis-style

This property defines whether oblique font faces are synthesized when a font family lacks oblique faces.

Value: auto | none

Initial: auto

Applies To: All elements and text

Inherited: Yes

￭ MDN documentation: font-synthesis-style

font-synthesis-weight

This property specifies whether or not the bold typeface may be synthesized when it is missing in a font family.

Value: auto | none

Initial: auto

Applies To: all elements and text

Inherited: Yes

￭ MDN documentation: font-synthesis-weight

font-variant

Another type of variation within a font family is the small-caps. In a small-caps font the lower case letters look similar to
the uppercase ones, but in a smaller size and with slightly different proportions. The 'font-variant' property selects that
font.

Value: normal | small-caps

Initial: normal

Applies To: all elements and text

Inherited: Yes

￭ MDN documentation: font-variant

www.pdfreactor.com

E.9.1 Properties

319

https://developer.mozilla.org/en-US/docs/Web/CSS/font-synthesis-style
https://developer.mozilla.org/en-US/docs/Web/CSS/font-synthesis-weight
https://developer.mozilla.org/en-US/docs/Web/CSS/font-variant

font-weight

The 'font-weight' property specifies the weight of a font. If the font-family has a matching font face, the best match is
selected. Otherwise, a bold font is synthesized.

Value: normal | bold | bolder | lighter | <numerical-font-weight>

Initial: normal

Applies To: all elements and text

Inherited: Yes

<numerical-font-weight>

A number greater or equals to 1 and less or equal to 1000, where values of 400 or smaller are mapped to 'normal'
and values of 500 or larger are mapped to 'bold'.

￭ MDN documentation: font-weight

footnote-display

Determines whether a footnote is displayed as a block element or inline element.

Value: block | inline

Initial: block

Applies To: footnotes

Inherited: No

block

The footnote element is placed in the footnote area as a block element. This is the default value.

inline

The footnote element is placed in the footnote area as an inline element.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

320

https://developer.mozilla.org/en-US/docs/Web/CSS/font-weight

-ro-footnote-fragmentation

This property can be used to disable the fragmentation of footnotes. By default the fragmentation of footnotes is
automatically managed by the layout engine. If fragmentation of footnotes is disabled then footnote bodies are not
paginated anymore (no distribution over multiple pages) and footnote bodies are always placed on the same page as
their corresponding footnote call (call and marker are always on the same page). To disable the fragmentation of
footnotes for the entire document this property can be set on the root element. To disable the fragmentation of footnotes
for a multi column element or a region flow then the property can be set on the multi column element or the first region
element of the region flow. The property is an inherited property. If it is set on an element then it affects the entire subtree
of this element.

Value: auto | none

Initial: auto

Applies To: root element, multi column elements and region elements

Inherited: Yes

-ro-formelement-name

Defines from which element or attribute in the document the names of the form elements are adopted to a generated
PDF.

Value: none | <string>

Initial: none

Applies To: Form elements

Inherited: No

￭ More information: Accessibility (p. 178)

gap
grid-gap

This property is a shorthand that sets row-gap and column-gap in one declaration.

Value: <'row-gap'> <'column-gap'>?

Initial:

Applies To: multi-column containers, flex containers and grid containers

Inherited: No

￭ MDN documentation: gap

www.pdfreactor.com

E.9.1 Properties

321

https://developer.mozilla.org/en-US/docs/Web/CSS/gap

-ro-glyph-layout-mode

This property allows to render text using more Open Type Font information at the cost of performance.

Value: auto | speed | quality

Initial: auto

Inherited: Yes

auto

Same as 'quality' except for pieces of text that are estimated not to require it, incl. most Latin text. (ligatures are not
considered a requirement) or for Java versions older than 13.

speed

Prioritizes performance, applying True Type Font kerning, but no more complex font features.

quality

Enables Open Type Font kerning/positioning (required e.g. for Cambodian) and ligatures. It also causes characters
in right-to-left text to be stored in PDF output in the correct order for accessibility. This impacts performance and
both performance and result depend on the Java version used. Not using the latest Java version is discouraged.

￭ More information: Accessibility (p. 178), Right-to-Left (p. 161)

grid

Sets all grid properties in a single declaration.

Value: <'grid-template'> | <'grid-template-rows'> / [auto-flow && dense?] <'grid-auto-columns'>? |
[auto-flow && dense?] <'grid-auto-rows'>? / <'grid-template-columns'>

Initial: none

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid

grid-area

Set all four grid placement properties in a single declaration.

Value: <grid-line> [/ <grid-line>]{0,3}

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-area

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

322

https://developer.mozilla.org/en-US/docs/Web/CSS/grid
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-area

grid-auto-columns

Sets the size of auto generated column tracks.

Value: <track-size>+

Initial: auto

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-auto-columns

grid-auto-flow

Specifies how the position of items without explicit grid placement properties is determined. Dense is slower than sparse
(no dense) and should only be used if necessary.

Value: [row | column] || dense

Initial: row

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-auto-flow

grid-auto-rows

Sets the size of auto generated row tracks.

Value: <track-size>+

Initial: auto

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-auto-rows

www.pdfreactor.com

E.9.1 Properties

323

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-columns
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-flow
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-auto-rows

grid-column

Sets the start and end column of an element inside the grid.

Value: <grid-line> [/ <grid-line>]?

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-column

grid-column-end

Sets the end column of an element inside the grid.

Value: <grid-line>

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-column-end

grid-column-start

Sets the start column of an element inside the grid.

Value: <grid-line>

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-column-start

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

324

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column-end
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-column-start

grid-row

Sets the start and end row of an element inside the grid.

Value: <grid-line> [/ <grid-line>]?

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-row

grid-row-end

Sets the end row of an element inside the grid.

Value: <grid-line>

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-row-end

grid-row-start

Sets the start row of an element inside the grid.

Value: <grid-line>

Initial: auto

Applies To: grid items and absolutely-positioned boxes whose containing block is a grid container

Inherited: No

￭ MDN documentation: grid-row-start

www.pdfreactor.com

E.9.1 Properties

325

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row-end
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-row-start

grid-template

Sets all three grid-template properties in a single declaration.

Value: none | [<'grid-template-rows'> / <'grid-template-columns'>] | [<line-names>? <string>
<track-size>? <line-names>?]+ [/ <explicit-track-list>]?

Initial: none

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-template

grid-template-areas

Specifies named grid areas. They can be used in conjunction with the grid placement properties to position items in the
grid.

Value: none | <string>+

Initial: none

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-template-areas

grid-template-columns

Specifies the line names and track sizing functions of column tracks.

Value: none | <track-list> | <auto-track-list>

Initial: none

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-template-columns

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

326

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-areas
https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-columns

grid-template-rows

Specifies the line names and track sizing functions of row tracks.

Value: none | <track-list> | <auto-track-list>

Initial: none

Applies To: grid containers

Inherited: No

￭ MDN documentation: grid-template-rows

height

This property specifies the content height of boxes.
This property does not apply to non-replaced inline elements.
Negative values for 'height' are illegal.

Value: auto | <length> | <percentage> | min-content | max-content

Initial: auto

Applies To: all elements but non-replaced inline elements, table columns, and column groups

Inherited: No

￭ MDN documentation: height

-ro-height

This property allows the automatic resizing of form controls according to their content. If this property is set to auto, the
form controls' height automatically adjusts according to its content.

Value: auto | none

Initial: none

Applies To: Form elements

Inherited: No

auto

Automatically adjusts the height of a form control if the contents' height exceeds the height defined for the form
control.

www.pdfreactor.com

E.9.1 Properties

327

https://developer.mozilla.org/en-US/docs/Web/CSS/grid-template-rows
https://developer.mozilla.org/en-US/docs/Web/CSS/height

hyphenate-after

This property specifies the minimum number of characters in a hyphenated word after the hyphenation character. The
'auto' value means that the UA chooses a value that adapts to the current layout.

Value: <integer> | auto

Initial: auto

Inherited: Yes

￭ More information: Automatic Hyphenation (p. 118)

hyphenate-before

This property specifies the minimum number of characters in a hyphenated word before the hyphenation character. The
'auto' value means that the UA chooses a value that adapts to the current layout.

Value: <integer> | auto

Initial: auto

Inherited: Yes

￭ More information: Automatic Hyphenation (p. 118)

hyphenate-character

This property specifies a string that is shown when hyphenation occurs. The 'auto' value means that the "hyphen-
minus"(2D) character is used. If it is not supported by the font a list further characters is tried, starting with
"hyphen"(2010). If the specified string contains soft-hyphens it is treated as 'auto'.

Value: <string> | auto

Initial: auto

Inherited: Yes

￭ More information: Automatic Hyphenation (p. 118)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

328

-ro-hyphenate-limit-lines

Indicates the maximum number of successive hyphenated lines in an element. The no-limit value means that there is no
limit. This property is ignored for the first word in a line, so it will not cause text to overflow.

Value: no-limit | <integer>

Initial: no-limit

Applies To: block containers

Inherited: Yes

￭ More information: Automatic Hyphenation (p. 118)

hyphens

This property controls whether hyphenation is allowed to create more soft wrap opportunities within a line of text.

Value: none | manual | auto

Initial: manual

Inherited: Yes

￭ MDN documentation: hyphens

￭ More information: Automatic Hyphenation (p. 118)

-ro-image-clip-path

Specifies whether clip path metadata of images is read and applied.

Value: none | auto | from-image

Initial: none

Inherited: Yes

none

Ignore clip path in image metadata.

auto

Automatically decide whether to read and apply clip path from image metadata based on the type of the image.

from-image

Read and apply clip path from image metadata.

www.pdfreactor.com

E.9.1 Properties

329

https://developer.mozilla.org/en-US/docs/Web/CSS/hyphens

-ro-image-interactivity

Determines whether links in SVGs and PDFs used as images are clickable in the resulting PDF.

Value: auto | none

Initial: auto

Applies To: images (SVG and PDF) and SVG roots

Inherited: Yes

auto

Links in the image are clickable. (default)

none

Links in the image are not clickable.

-ro-image-orientation

Enables or disables the image orientation being read from the image data or overrides that orientation. Based on the
orientation the image will be rotated in 90 degree increments and possibly flipped. Rotation can cause the layout width
and height to be swapped.

Value: from-image | none | <angle> | [<angle>? flip]

Initial: from-image

Inherited: Yes

none

Ignore orientation data.

from-image

Read orientation data from image.

<angle>

Angle (rounded to 90 degree increments) overriding orientation data.

flip

When specified in addition to <angle> additional flip the image.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

330

-ro-image-recompression

Specifies whether raster graphics should be recompressed when embedded into PDFs. Applies to image elements and
background images.
If the same image is used multiple times in the same document, the data is only embedded once. In this case when
recompression is enabled the best quality setting is used. This means that if there is one occurrence of an image where
this property is not set, the data of that image will not be recompressed.
Note: Using this feature may have an impact on the conversion time of large documents.

Value: auto | [<compression-function> conditional?]

Initial: auto

Inherited: No

auto

Same as "jpeg() conditional".

<compression-function>

Defines which compression algorithm should be used, either lossless or jpeg with an optional quality parameter.

conditional

If specified, the compression is only applied when -ro-image-resampling is used and the image is actually
resampled, else the image is embedded without forced recompression.

￭ See also: -ro-image-resampling , jpeg , lossless

image-rendering

Specifies whether images should be scaled with interpolation (smooth, soft) or without (crisp, pixelated).
For image output this means switching between nearest neighbor and bilinear, bicubic and Lanczos scaling.
For PDFs, which embed the images as-is and let the viewer scale them, it decides the value of the interpolate flag for
images which is a hint for the PDF viewer how to scale the images.
Please note that PDF conformances, like PDF/A, may forbid setting this flag, which will automatically be respected by
PDFreactor.
Please also note that in PDFs multiple instances of the same image (i.e. from the same URL) cannot have different values
for this property.For mixed values that would lead to different flag values interpolation will be set to true and a warning
will be logged. If you require the same image with different interpolations you can suffix the URLs, e.g. with
"#a1", "#a2", ...
This property also affects image resampling due to -ro-image-resampling.

Value: auto | smooth | high-quality | pixelated | crisp-edges

Initial: auto

Inherited: Yes

auto

Image output: use bicubic interpolation, PDF output: enable interpolation flag if allowed

smooth

Image output: use bilinear interpolation, PDF output: enable interpolation flag if allowed

www.pdfreactor.com

E.9.1 Properties

331

high-quality

Image output: use bicubic interpolation, PDF output: enable interpolation flag if allowed

pixelated

Image output: use nearest neighbor interpolation, PDF output: disable interpolation flag

crisp-edges

Image output: use nearest neighbor interpolation, PDF output: disable interpolation flag

￭ MDN documentation: image-rendering

￭ See also: -ro-image-resampling

-ro-image-resampling

Specifies an optional maximum resolution for raster graphics in the result PDF. If an image exceeds the resolution, it is
resampled to match it. Applies to image elements and background images.
If the same image is used multiple times in the same document, the data is only embedded once.
In this case when resampling is enabled the highest resolution is used. This means that if there is one occurrence of an
image where this property is not set, the data of that image will not be resampled.
To specify the compression algorithm and the quality of the resampled image, see -ro-image-recompression (and its
"conditional" flag).
To specify whether the image is resampled with interpolation or without, see image-rendering.
Note: Using this feature may have an impact on the conversion time of large documents.

Value: none | <resolution>

Initial: none

Inherited: No

none

No resampling is applied to the image.

<resolution>

The maximum resolution of the image in the PDF. Allowed units are dpi, dpcm and dppx.

￭ See also: -ro-image-recompression , image-rendering

-ro-image-resolution

Specifies the resolution of the image and whether the resolution should be read from the image data. A resolution
different from 1dppx or 96dpi will change the inherent/natural size of the image.

Value: from-image || <resolution>

Initial: 1dppx

Inherited: Yes

from-image

When specified the resolution is read from image metadata (allowing different resolutions for each dimension). If
none is found falls back to the specified resolution or the default of 1dppx.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

332

https://developer.mozilla.org/en-US/docs/Web/CSS/image-rendering

initial-page

This defines to which page a viewer application should scroll when opening this document.

Value: <integer>

Initial: 1

Applies To: @-ro-preferences

Inherited: No

￭ More information: Document-Specific Preferences (p. 168)

initial-zoom

Defines the initial zoom factor when opening the document in a viewer application.

Value: auto | <percentage> | fit-page | fit-page-height | fit-page-width | fit-content | fit-content-
height | fit-content-width

Initial: auto

Applies To: @-ro-preferences

Inherited: No

fit-page

The entire page is visible. In 2 column or 2 page mode this includes the width of both pages (see 'page-layout').

fit-page-height

The page fills the view port height.

fit-page-width

The page fills the view port width. In 2 column or 2 page mode this includes the width of both pages (see 'page-
layout').

fit-content

The content fills the complete view port.

fit-content-height

The content fills the view port height.

fit-content-width

The content fills the view port width.

￭ See also: page-layout

￭ More information: Document-Specific Preferences (p. 168)

www.pdfreactor.com

E.9.1 Properties

333

inset-block
inset-inline

These properties set position properties (top, bottom, left, right) based on the logical directions (depending on text
direction).
While the 'inset-block' values are computed to top and bottom, the 'inset-inline' values are computed to 'left' and 'right' for
ltr directions or 'right' and 'left' for rtl directions.

Value: [<length> | <percentage> | auto]{1,2}

Initial: see individual properties

Inherited: No

￭ MDN documentation: inset-block, inset-inline

￭ More information: Text Direction Dependent Layouts (p. 162)

isolation

Value: auto | isolate

Initial: auto

Inherited: No

￭ MDN documentation: isolation

justify-content

Specifies how the space between flex items along the main axis is distributed.

Value: normal | stretch | space-between | space-around | space-evenly | [safe | unsafe]? [start |
center | end | flex-start | flex-end | left | right]

Initial: normal

Applies To: flex containers and grid containers

Inherited: No

￭ MDN documentation: justify-content

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

334

https://developer.mozilla.org/en-US/docs/Web/CSS/inset-block
https://developer.mozilla.org/en-US/docs/Web/CSS/inset-inline
https://developer.mozilla.org/en-US/docs/Web/CSS/isolation
https://developer.mozilla.org/en-US/docs/Web/CSS/justify-content

justify-items

This property specifies the default justify-self for all of the child boxes participating in this box’s formatting context.

Value: normal | stretch | [first | last]? baseline | [safe | unsafe]? [center | start | end | self-start | self-
end | flex-start | flex-end | left | right] | legacy | legacy && [left | right | center]

Initial: legacy

Inherited: No

￭ MDN documentation: justify-items

justify-self

Justifies the box within its containing block along the inline/row/main axis of the alignment container.

Value: auto | normal | stretch | [first | last]? baseline | [safe | unsafe]? [center | start | end | self-start
| self-end | flex-start | flex-end | left | right]

Initial: auto

Applies To: block-level boxes, absolutely-positioned boxes and grid items

Inherited: No

￭ MDN documentation: justify-self

-ro-keywords

Sets the keywords in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied
to multiple elements the values are concatenated, separated by a comma.)

Value: none | [<string> | content()]+

Initial: none

Applies To: all elements

Inherited: No

none

Does not set a keywords.

<string>

Sets the specified string as keywords.

www.pdfreactor.com

E.9.1 Properties

335

https://developer.mozilla.org/en-US/docs/Web/CSS/justify-items
https://developer.mozilla.org/en-US/docs/Web/CSS/justify-self

content()

Sets the keywords from the content of the element.

￭ See also: -ro-author , -ro-subject , -ro-title

￭ More information: Metadata (p. 92)

left

Like 'top', but specifies how far a box's left margin edge is offset to the right of the left edge of the box's containing block.
For relatively positioned boxes, the offset is with respect to the left edge of the box itself.

Value: <length> | <percentage> | auto

Initial: auto

Applies To: positioned elements

Inherited: No

￭ MDN documentation: left

￭ See also: inset-*

letter-spacing

This property specifies spacing behavior between text characters.

Value: normal | <length>

Initial: normal

Inherited: Yes

￭ MDN documentation: letter-spacing

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

336

https://developer.mozilla.org/en-US/docs/Web/CSS/left
https://developer.mozilla.org/en-US/docs/Web/CSS/letter-spacing

-ro-line-break-opportunity

Proprietary property used to customize where line breaks are allowed. Rules for break opportunities can be added to the
default ones or replace them entirely. Each rules consists of two strings with regex syntax (without lookbehind and
lookahead) defining the content surrounding the break opportunity. The second string, describing the following content,
can be omitted.
Please note that backslashes in the strings must be escaped with a second backslash, e.g. "\\s" instead of "\s".

Value: normal || [<whitelist>#? [/ <blacklist>#]?]

Initial: normal

Inherited: Yes

normal

Use the line break opportunities defined by unicode specifications. This is the default value. If used together with
whitelist/blacklist, both the unicode rules and the custom rules apply. If omitted only the custom rules apply.

<whitelist>

One or two space separated regex strings that specify what content must surround a text position in order to make
that position a line break opportunity. The first string describes the content before the break position, the second
describes the content after it. The second string can be omitted, while the first string can be an empty string if it is
not needed.

<blacklist>

One or two space separated regex strings that specify what content must surround a break opportunity candidate
in order to prevent it from becoming an actual line break opportunity. The first string describes the content before
the position, the second describes the content after it. The second string can be omitted, while the first string can
be an empty string if it is not needed. The blacklist takes precedence over the whitelist.

￭ More information: Customizing Line Breaks (p. 119)

-ro-line-grid

Specifies whether this box creates a new baseline grid for its descendants or uses the same baseline grid as its parent.

Value: match-parent | create

Initial: match-parent

Applies To: block containers

Inherited: No

match-parent

Box assumes the line grid of its parent.

create

Box creates a new line grid using its own font and line layout settings.

￭ More information: Line Grids and Snapping (p. 142)

www.pdfreactor.com

E.9.1 Properties

337

line-height

On a block container element whose content is composed of inline-level elements, 'line-height' specifies the minimal
height of line boxes within the element.

Value: normal | <number> | <length> | <percentage>

Initial: normal

Inherited: Yes

￭ MDN documentation: line-height

-ro-line-snap

This property applies to all the line boxes directly contained by the element, and, when not none, causes each line box to
shift until it snaps to the line grid specified by line-grid.

Value: none | baseline | contain

Initial: none

Inherited: Yes

none

Line boxes do not snap to the grid; they stack normally.

baseline

The baseline snaps to the line grid applied to the element.

contain

Two baselines are used to align the line box: the line box is snapped so that its central baseline is centered
between two of the line grid's baselines.

￭ More information: Line Grids and Snapping (p. 142)

-ro-link

This property allows to define hyperlinks via style. Multiple values are concatenated to one URL.

Value: auto | none | [<string>]+

Initial: auto

Applies To: all elements

Inherited: No

none

The element is not a hyperlink.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

338

https://developer.mozilla.org/en-US/docs/Web/CSS/line-height

<string>

The element is a hyperlink to the URL the <string> contains.

auto

The element is not a hyperlink, unless it is a QRcode, video or audio element.

￭ See also: -ro-destination-area , -ro-link-area

￭ More information: Links (p. 91)

-ro-link-area

This property can be used to specify how the clickable areas of links are determined.

Value: all | all-block | content | content-block | block

Initial: all

Inherited: No

all

Makes the border-areas of all elements in the subtree of the link clickable.

all-block

Like 'all', but merges the bounds of all areas into one clickable rectangle.

content

Makes the border-areas of all content elements (text, images and empty inlines) in the subtree of the link clickable.

content-block

Like 'content', but merges the bounds of all areas into one clickable rectangle.

block

Makes only the border-area of the link element itself clickable.

￭ See also: -ro-link

￭ More information: Links (p. 91)

list-style

The 'list-style' property is a shorthand notation for setting the three properties 'list-style-type', 'list-style-image', and 'list-
style-position' at the same place in the style sheet.

Value: <'list-style-position'> || <'list-style-image'> || <'list-style-type'>

Initial: see individual properties

Applies To: elements with 'display: list-item'

Inherited: Yes

￭ MDN documentation: list-style

￭ See also: list-style-image , list-style-position , list-style-type

www.pdfreactor.com

E.9.1 Properties

339

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style

list-style-image

This property sets the image that will be used as the list item marker. When the image is available, it will replace the
marker set with the 'list-style-type' marker.

Value: <uri> | <gradient> | none

Initial: none

Applies To: elements with 'display: list-item'

Inherited: Yes

￭ MDN documentation: list-style-image

list-style-position

This property specifies the position of the marker box with respect to the principal block box.

Value: inside | outside

Initial: outside

Applies To: elements with 'display: list-item'

Inherited: Yes

￭ MDN documentation: list-style-position

list-style-type

This property specifies appearance of the list item marker if 'list-style-image' has the value 'none' or if the image pointed
to by the URI cannot be displayed. The value 'none' specifies no marker, otherwise there are three types of marker:
glyphs, numbering systems, and alphabetic systems.
Glyphs are specified with disc, circle, and square.

Value: <counter-style> | <string> | none

Initial: disc

Applies To: elements with 'display: list-item'

Inherited: Yes

￭ MDN documentation: list-style-type

￭ More information: Counter and Ordered List Style Types (p. 257)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

340

https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-image
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-position
https://developer.mozilla.org/en-US/docs/Web/CSS/list-style-type

-ro-listitem-value

Determine the number of an ordered list item.

Value: <integer> | auto

Initial: auto

Applies To: list-item

Inherited: No

<integer>

The number used for an ordered list item.

auto

The number is the number of the previous item plus one (or one if it is the first item).

￭ Deprecated! Use counter-set instead.

margin

The 'margin' property is a shorthand property for setting 'margin-top', 'margin-right', 'margin-bottom', and 'margin-left' at
the same place in the style sheet.

Value: [<length> | <percentage> | auto]{1,4}

Initial: see individual properties

Applies To: all elements except elements with table display types other than table-caption, table and
inline-table

Inherited: No

￭ MDN documentation: margin

￭ See also: margin-*-* , margin-*

www.pdfreactor.com

E.9.1 Properties

341

https://developer.mozilla.org/en-US/docs/Web/CSS/margin

margin-block
margin-inline

These properties set margins based on the logical directions (depending on text direction).
The first value of 'margin-block' sets the margin-top, the second the 'margin-bottom'. The values of margin-inline sets
'margin-left' and 'margin-right' in BiDi-dependent order.
If only one value is given, it applies to both the start and end edges.

Value: [<length> | <percentage> | auto]{1,2}

Initial:

Inherited: No

￭ MDN documentation: margin-block, margin-inline

margin-inline-start
margin-inline-end
margin-block-start
margin-block-end

These properties set margins based on the logical directions (depending on text direction).
Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left,
depending on the BiDi text direction.

Value: <length> | <percentage> | auto

Initial: 0

Inherited: No

￭ MDN documentation: margin-inline-start, margin-inline-end, margin-block-start, margin-block-end

￭ See also: margin-*

￭ More information: Text Direction Dependent Layouts (p. 162)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

342

https://developer.mozilla.org/en-US/docs/Web/CSS/margin-block
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-inline
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-inline-start
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-inline-end
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-block-start
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-block-end

margin-top
margin-right
margin-bottom
margin-left

These properties set the top, right, bottom, and left margin of a box.

Value: <length> | <percentage> | auto

Initial: 0

Applies To: all elements except elements with table display types other than table-caption, table and
inline-table

Inherited: No

￭ MDN documentation: margin-top, margin-right, margin-bottom, margin-left

￭ See also: margin-*-*

-ro-marker-side

Value: match-self | match-parent

Initial: match-self

Applies To: list items

Inherited: Yes

-ro-marks

Adds the specified printer marks inside the page's MediaBox.

Value: none | [trim || bleed || registration]

Initial: none

Applies To: @page

Inherited: No

none

No marks are added to the page.

trim

Adds trim line marks to the four corners of the page.

bleed

Adds bleed line marks to the four corners of the page.

www.pdfreactor.com

E.9.1 Properties

343

https://developer.mozilla.org/en-US/docs/Web/CSS/margin-top
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-right
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/margin-left

registration

Adds registration marks to the four sides of the page.

￭ See also: -ro-marks-color , -ro-marks-width , -ro-media-size

￭ More information: Printer Marks (p. 151)

￭ Deprecated! Use marks instead.

marks

Adds the specified printer marks inside the page's MediaBox.

Value: none | [crop || cross || -ro-bleed]

Initial: none

Applies To: @page

Inherited: No

none

No marks are added to the page.

crop

Adds trim line marks to the four corners of the page.

-ro-bleed

Adds bleed line marks to the four corners of the page.

cross

Adds registration marks to the four sides of the page.

￭ More information: Printer Marks (p. 151)

-ro-marks-color

Sets the color of crop and bleed marks.

Value: <color>

Initial: cmyk(0%, 0%, 0%, 100%)

Applies To: @page

Inherited: No

￭ See also: marks

￭ More information: Printer Marks (p. 151)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

344

-ro-marks-offset

Sets the offset of crop marks, registration marks and color bars. The offset of bleed marks is not affected by this property
and must be set separately.

Value: <length> | <percentage>

Initial: 100%

Applies To: @page

Inherited: No

-ro-marks-width

Sets the line width of crop, bleed and registration marks.

Value: none | <length>

Initial: 0.5pt

Applies To: @page

Inherited: No

￭ See also: marks

￭ More information: Printer Marks (p. 151)

max-block-size
max-inline-size

These properties set max-height and max-width based on the logical directions (depending on text direction).
The property 'max-block-size' sets 'max-height', while 'max-inline-size' sets 'max-width'

Value: <'max-width'>

Initial: none

Applies To: same as width and height

Inherited: No

￭ MDN documentation: max-block-size, max-inline-size

￭ See also: max-height , max-width

www.pdfreactor.com

E.9.1 Properties

345

https://developer.mozilla.org/en-US/docs/Web/CSS/max-block-size
https://developer.mozilla.org/en-US/docs/Web/CSS/max-inline-size

max-height

This property allows authors to limit box heights.

Value: none | <length> | <percentage> | min-content | max-content

Initial: none

Applies To: all elements but non-replaced inline elements, table columns, and column groups

Inherited: No

<length>

Specifies a fixed maximum computed height.

<percentage>

Specifies a percentage for determining the used value. The percentage is calculated with respect to the height of
the generated box's containing block. If the height of the containing block is not specified explicitly (i.e., it depends
on content height), and this element is not absolutely positioned, the percentage value is treated as 'none'.

none

No limit on the height of the box.

min-content

Behaves like 'none'.

max-content

Behaves like 'none'

￭ MDN documentation: max-height

￭ See also: min-height

max-width

This property allows authors to constrain content widths to a maximum.

Value: none | <length> | <percentage> | min-content | max-content

Initial: none

Applies To: all elements but non-replaced inline elements, table rows, and row groups

Inherited: No

￭ MDN documentation: max-width

￭ See also: min-width

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

346

https://developer.mozilla.org/en-US/docs/Web/CSS/max-height
https://developer.mozilla.org/en-US/docs/Web/CSS/max-width

-ro-media-size

Specifies the size of the MediaBox, one of the PDF page boxes.
The MediaBox defines an oversized paper sheet that allows to add a bleed area, marks and color bars around the normal
page content.
This property works the same way as the size property does.

Value: none | <length>{1,2} | auto | [<page-size> || [portrait | landscape]]

Initial: none

Applies To: @page

Inherited: No

￭ See also: bleed , -ro-colorbar-* , marks , size

￭ More information: PDF Page Boxes (p. 149)

min-block-size
min-inline-size

These properties set min-height and min-width based on the logical directions (depending on text direction).
The propery 'min-block-size' sets the 'min-height', while 'min-inline-size' sets 'min-width'.

Value: <'min-width'>

Initial: auto

Applies To: same as width and height

Inherited: No

￭ MDN documentation: min-block-size, min-inline-size

￭ See also: min-height , min-width

min-height

This property allows authors to set a minimum box height.

Value: auto | <length> | <percentage> | min-content | max-content

Initial: auto

Applies To: all elements but non-replaced inline elements, table columns, and column groups

Inherited: No

￭ MDN documentation: min-height

￭ See also: max-height

www.pdfreactor.com

E.9.1 Properties

347

https://developer.mozilla.org/en-US/docs/Web/CSS/min-block-size
https://developer.mozilla.org/en-US/docs/Web/CSS/min-inline-size
https://developer.mozilla.org/en-US/docs/Web/CSS/min-height

min-width

This property allows authors to constrain content widths to a minimum value.

Value: auto | <length> | <percentage> | min-content | max-content

Initial: auto

Applies To: all elements but non-replaced inline elements, table rows, and row groups

Inherited: No

￭ MDN documentation: min-width

￭ See also: max-width

mix-blend-mode

Value: normal | multiply | screen | overlay | darken | lighten | color-dodge | color-burn | hard-light |
soft-light | difference | exclusion | hue | saturation | color | luminosity

Initial: normal

Inherited: No

￭ MDN documentation: mix-blend-mode

negative

When defining custom counter styles, the negative descriptor lets you alter the representations of negative counter
values, by providing a way to specify symbols to be appended or prepended to the counter representation when the value
is negative.

Value: [<string> | <identifier>] [<string> | <identifier>]?

Initial: "-"

Applies To: @counter-style

Inherited: No

￭ MDN documentation: negative

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

348

https://developer.mozilla.org/en-US/docs/Web/CSS/min-width
https://developer.mozilla.org/en-US/docs/Web/CSS/mix-blend-mode
https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/negative

object-fit

Defines how the content of a replaced element, e.g. an image, fits into its box.

Value: fill | contain | cover | none | scale-down

Initial: fill

Applies To: Replaced Elements

Inherited: No

￭ MDN documentation: object-fit

￭ See also: object-position

object-position

Determines the alignment of a replaced element, e.g. an image, inside its box.
Note: This property has no effect unless "object-fit" is set to a non-default value.

Value: <position>

Initial: 50% 50%

Applies To: replaced elements

Inherited: No

￭ MDN documentation: object-position

￭ See also: object-fit

-ro-object-slice

Allows block images to be split at page breaks.

Value: none | auto | avoid

Initial: none

Applies To: Block replaced-elements

Inherited: No

none

Default. Images are not split.

auto

Images are split at page breaks.

www.pdfreactor.com

E.9.1 Properties

349

https://developer.mozilla.org/en-US/docs/Web/CSS/object-fit
https://developer.mozilla.org/en-US/docs/Web/CSS/object-position

avoid

Images are split at page breaks, unless they fit on the next page.

￭ More information: Pagination of Images (p. 114)

inset-inline-start
inset-inline-end
inset-block-start
inset-block-end

These properties set the position properties (top, bottom, left, right) based on the logical directions (depending on text
direction).
Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left,
depending on the BiDi text direction.

Value: <length> | <percentage> | auto

Initial: auto

Applies To: positioned elements

Inherited: No

￭ MDN documentation: inset-inline-start, inset-inline-end, inset-block-start, inset-block-end

￭ See also: bottom , left , right , top

￭ More information: Text Direction Dependent Layouts (p. 162)

opacity

Specifies the transparency of an element.

Value: <alphavalue>

Initial: 1

Inherited: No

￭ MDN documentation: opacity

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

350

https://developer.mozilla.org/en-US/docs/Web/CSS/inset-inline-start
https://developer.mozilla.org/en-US/docs/Web/CSS/inset-inline-end
https://developer.mozilla.org/en-US/docs/Web/CSS/inset-block-start
https://developer.mozilla.org/en-US/docs/Web/CSS/inset-block-end
https://developer.mozilla.org/en-US/docs/Web/CSS/opacity

order

Specifies in which order the flex/grid items are laid out in their container.

Value: <integer>

Initial: 0

Applies To: flex items and grid items

Inherited: No

￭ MDN documentation: order

orphans

The 'orphans' property specifies the minimum number of lines in a block container that must be left at the bottom of a
page, region, or column.
Only positive values are allowed.

Value: <integer>

Initial: 2

Applies To: block container elements

Inherited: Yes

￭ MDN documentation: orphans

￭ More information: Widows & Orphans (p. 118)

outline

The 'outline' property is a shorthand property, and sets all three of 'outline-style', 'outline-width', and 'outline-color'.

Value: ['outline-color' || 'outline-style' || 'outline-width']

Initial: see individual properties

Inherited: No

￭ MDN documentation: outline

￭ See also: border , outline-color , outline-style , outline-width

www.pdfreactor.com

E.9.1 Properties

351

https://developer.mozilla.org/en-US/docs/Web/CSS/order
https://developer.mozilla.org/en-US/docs/Web/CSS/orphans
https://developer.mozilla.org/en-US/docs/Web/CSS/outline

outline-color

The 'outline-color' sets the color of an outline. The value 'invert' is not supported.

Value: <color>

Initial: currentColor

Inherited: No

￭ MDN documentation: outline-color

￭ See also: border-color

￭ More information: CSS Color Keywords (p. 251)

outline-offset

Specifies the offset between the outline and the border edge. May be negative.

Value: <length>

Initial: 0

Inherited: No

￭ MDN documentation: outline-offset

￭ See also: outline

outline-style

The 'outline-style' property accepts the same values as 'border-style', except that 'hidden' is not a legal outline style.

Value: <border-style>

Initial: none

Inherited: No

￭ MDN documentation: outline-style

￭ See also: border-style

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

352

https://developer.mozilla.org/en-US/docs/Web/CSS/outline-color
https://developer.mozilla.org/en-US/docs/Web/CSS/outline-offset
https://developer.mozilla.org/en-US/docs/Web/CSS/outline-style

outline-width

The 'outline-width' property accepts the same values as 'border-width'.

Value: <border-width>

Initial: medium

Inherited: No

￭ MDN documentation: outline-width

￭ See also: border-width

overflow

Shorthand for overflow-x and overflow-y

Value: visible | hidden | clip | scroll | auto

Initial: visible

Applies To: block containers

Inherited: No

￭ MDN documentation: overflow

￭ See also: -ro-overflow-clip-margin , overflow-x, overflow-y

-ro-overflow-clip-margin

When "overflow: clip" is set for an element this property specifies how the clipping area is determined, starting with one of
three boxes and adding an offset. The area is affected by border-radius.

Value: [content-box | padding-box | border-box] || <length>

Initial: 0px

Inherited: No

content-box | padding-box | border-box

Specifies the box of the element to use as the basis of the clip area. The default is padding-box.

<length>

Optionally increases the size of the clipping area in all directions. The value may not be negative. The defaults is 0.

￭ MDN documentation: overflow-clip-margin

￭ See also: overflow

www.pdfreactor.com

E.9.1 Properties

353

https://developer.mozilla.org/en-US/docs/Web/CSS/outline-width
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-clip-margin

overflow-wrap

This property specifies whether the UA may arbitrarily break within a word to prevent overflow when an otherwise
unbreakable string is too long to fit within the line box. It only has an effect when 'white-space' allows wrapping. The
difference between 'break-word' and 'anywhere' is that only the latter influences layouts that depend on the minimum
sizes of elements.

Value: normal | break-word | anywhere

Initial: normal

Inherited: Yes

￭ MDN documentation: overflow-wrap

overflow-x
overflow-y

Specify whether overflowing content of the box is visible or clipped. Additionally, setting values other than the default
'visible' makes the box a block formatting context, which changes layout behaviors like margin collapsing and baseline
alignment. If the two values differ the box is treated as 'auto'. Using the 'overflow' shorthand is recommended.

Value: visible | hidden | clip | auto | scroll

Initial: visible

Applies To: block containers

Inherited: No

visible

Overflowing content is visible and the box is not made a block formatting context.

hidden

Overflowing content is clipped and the box is made a block formatting context.

clip

Overflowing content is clipped and the box is made a block formatting context. In contrast to 'hidden' (and 'auto'),
setting this value still allows the box to be aligned by its baseline.

auto

Overflowing content is clipped and the box is made a block formatting context.

scroll

Overflowing content is visible in paged layouts and clipped otherwise, however the box is made a block formatting
context in any case.

￭ MDN documentation: overflow-x, overflow-y

￭ See also: overflow

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

354

https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-wrap
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-x
https://developer.mozilla.org/en-US/docs/Web/CSS/overflow-y

pad

The pad descriptor can be used with custom counter style definitions when you need the marker representations to have
a minimum length.

Value: <integer> && [<string> | <identifier>]

Initial: 0 ""

Applies To: @counter-style

Inherited: No

￭ MDN documentation: pad

padding

The 'padding' property is a shorthand property for setting 'padding-top', 'padding-right', 'padding-bottom', and 'padding-
left' at the same place in the style sheet.

Value: <padding-width>{1,4}

Initial: see individual properties

Applies To: all elements except table-row-group, table-header-group, table-footer-group, table-row, table-
column-group and table-column

Inherited: No

￭ MDN documentation: padding

￭ See also: padding-*-* , padding-*

padding-block
padding-inline

These properties set paddings based on the logical directions (depending on text direction).
The first value of padding-block sets padding-top, and the second value set padding-bottom. The values of padding-inline
set padding-left and padding-right in BiDi-dependent order.
If only one value is given, it applies to both the start and end edges.

Value: <padding-width>{1,2}

Initial: 0

Inherited: No

￭ MDN documentation: padding-block, padding-inline

￭ More information: Text Direction Dependent Layouts (p. 162)

www.pdfreactor.com

E.9.1 Properties

355

https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/pad
https://developer.mozilla.org/en-US/docs/Web/CSS/padding
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-block
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-inline

padding-inline-start
padding-inline-end
padding-block-start
padding-block-end

These properties set paddings based on the logical directions (depending on text direction).
Block start and end correspond to top and bottom. Inline start and end correspond to left and right or right and left,
depending on the BiDi text direction.

Value: <padding-width>

Initial: 0

Inherited: No

￭ MDN documentation: padding-inline-start, padding-inline-end, padding-block-start, padding-block-end

￭ See also: padding-*

￭ More information: Text Direction Dependent Layouts (p. 162)

padding-top
padding-right
padding-bottom
padding-left

These properties set the top, right, bottom, and left padding of a box.

Value: <padding-width>

Initial: 0

Applies To: all elements except table-row-group, table-header-group, table-footer-group, table-row, table-
column-group and table-column

Inherited: No

￭ MDN documentation: padding-top, padding-right, padding-bottom, padding-left

￭ See also: padding-*-*

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

356

https://developer.mozilla.org/en-US/docs/Web/CSS/padding-inline-start
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-inline-end
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-block-start
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-block-end
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-top
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-right
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-bottom
https://developer.mozilla.org/en-US/docs/Web/CSS/padding-left

page

This property is used to specify a particular type of page (called a named page) on which an element must be displayed.
If necessary, a forced page break is introduced and a new page generated of the specified type.

Value: auto | <identifier>

Initial: auto

Applies To: boxes that create class 1 break points

Inherited: No

<identifier>

The name of a particular page type. Page type names are case-sensitive identifiers.

￭ More information: Named Pages (p. 116), Page Groups (p. 116)

page-break-before
page-break-after

Shorthand for the 'break-before' and 'break-after' properties.

Value: auto | always | avoid | left | right

Initial: auto

Applies To: block-level elements

Inherited: No

￭ MDN documentation: page-break-before, page-break-after

￭ See also: break-before, break-after

page-break-inside

Shorthand for the 'break-inside' property.

Value: avoid | auto

Initial: auto

Applies To: block-level elements

Inherited: No

￭ MDN documentation: page-break-inside

￭ See also: break-inside

www.pdfreactor.com

E.9.1 Properties

357

https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-before
https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-after
https://developer.mozilla.org/en-US/docs/Web/CSS/page-break-inside

-ro-page-clip

Determines which PDF page box content is clipped at.

Value: bleed | media

Initial: bleed

Applies To: @page

Inherited: No

￭ More information: PDF Page Boxes (p. 149)

page-layout

Defines the view mode that is initially used to view the document.
The property values have some deprecated synonyms: Instead of "1" and "2", "single", "one" and "two" can be used.
Page and column are also valid in their plural forms. However, usage of these variants is discouraged.

Value: auto | 1 column | 2 column | 1 page | 2 page

Initial: auto

Applies To: @-ro-preferences

Inherited: No

￭ More information: Document-Specific Preferences (p. 168)

pages-counter-offset

An optional offset to the value of the "pages" counter, e.g. "-1" to not count the cover page.

Value: <integer>

Initial: 0

Applies To: @-ro-preferences

Inherited: No

￭ More information: Document-Specific Preferences (p. 168), Page Counters (p. 129)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

358

-ro-paint-reordering

This property can be used to change the paint order of floated, positioned and transformed elements inside a
single stacking context by changing the layers to which the elements are assigned. This functionality can be
used to fix strange text selections or wrong text extractions of PDF viewers and tools which are caused by
the default CSS paint order rules.

Value: normal | avoid

Initial: normal

Applies To: floated, positioned and transformed elements

Inherited: No

normal

The stacking context layer to which an element is assigned is determined by default CSS rules. Floated elements
without stacking context influencing styles (e.g. position or transform) are assigned to layer 4 (between block and
inline). Transformed and positioned elements with stack level 0 (z-index 0 or auto) are assigned to layer 6 (after
inline).

avoid

Disables the assignment to layer 4 for floated elements and layer 6 for positioned and transformed elements.
Instead they are assigned to layer 3 (non-inline parts) or layer 5 (inline parts). This assignment is identical to the
assignment they would have if the corresponding styles would not be present. This behavior is only applied if no
other stacking context influencing styles with a higher priority are present, e.g. explicit z-index values or CSS filter
functions.

-ro-passdown-styles

The -ro-passdown-styles property controls how style is passed down from an embedding document to an embedded
document.
Counters or Named Strings from the embedding document will remain available to the embedded document, independent
of the value set

Value: auto | all | stylesheets-only | none

Initial: auto

Applies To: iframe, @page

Inherited: No

all

Default value, all inheritable inline styles and all style sheets passed down to the embedded document.

stylesheets-only

Styles that have been set via the style-attribute (inline styles) are ignored, but the style sheets of the embedding
document are passed down.

none

Styles are not passed down to the embedded document.

www.pdfreactor.com

E.9.1 Properties

359

auto

Whether the styles are passed down or not depends on the element (e.g. the styles are only passed down if the
iframe is set to be seamless).

￭ More information: iframes (p. 78), Running Documents (p. 128)

-ro-pdf-attachment-description

The description of the attachment. If this is not specified the name is used.

Value: none | <string>

Initial: none

Inherited: No

￭ More information: Attachments (p. 108)

-ro-pdf-attachment-location

Specifies whether the attachment is related to the area of the element.

Value: element | document

Initial: element

Inherited: No

element

The attachment is related to the area of the element. Viewers may show a marker near that area.

document

The file is attached to the document with no relation to the element.

￭ More information: Attachments (p. 108)

-ro-pdf-attachment-name

The file name associated with the attachment. It is recommended to specify the correct file extension. If this is not
specified the name is derived from the URL.

Value: none | <string>

Initial: none

Inherited: No

￭ More information: Attachments (p. 108)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

360

-ro-pdf-attachment-url

A URL pointing to the file to be embedded. This URL can be relative and may be specified via a URL function or as a
string. A string value of "#" will embed the source document.

Value: none | <url> | <string>

Initial: none

Inherited: No

￭ More information: Attachments (p. 108)

-ro-pdf-form-field-flags

For PDF form and signature fields allows specifying the flags read-only, required and no-export. For text fields allows
specifying multi-line, no-scroll and rich-text.

Value: none | [multi-line || no-export || no-scroll || read-only || required || rich-text]

Initial: none

Applies To: Form elements

Inherited: No

multi-line

Allows text field content to occupy multiple lines. This is enabled by default for "textarea" elements.

no-export

Prevents the contents of the form field to be exported.

no-scroll

Disables horizontal scrolling inside a text field. This will also limit how much text content can be input in the field.

read-only

Prevents the form field from being filled or changed by user input.

required

Marks the form field as "required" which might be evaluated by PDF viewers or third party applications.

rich-text

Allows the user to apply rich text formatting to the text field's contents.

￭ See also: -ro-pdf-format , -ro-pdf-signature-field-name

￭ More information: Interactive PDF Forms (p. 93)

www.pdfreactor.com

E.9.1 Properties

361

-ro-pdf-form-field-maxlength

Limits the amount of content that can be input in a PDF form field.

Value: none | <integer>

Initial: none

Applies To: Form elements

Inherited: No

<integer>

Specifies the maximum number of characters that the user can input.

￭ More information: Interactive PDF Forms (p. 93)

-ro-pdf-format

This property converts form elements to interactive PDF forms.

Value: none | pdf

Initial: none

Applies To: Form elements

Inherited: No

none

The form element is not converted.

pdf

The form element is converted to an AcroForm.

￭ See also: -ro-pdf-form-field-flags

￭ More information: Interactive PDF Forms (p. 93)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

362

-ro-pdf-overprint
-ro-pdf-overprint-content

Using the properties -ro-pdf-overprint and -ro-pdf-overprint-content you can specify the overprint properties of elements
and their content as either none, mode0 or mode1 (zero overprint mode). The default of auto does not change the mode
for this element.
-ro-pdf-overprint affects the entire element, while -ro-pdf-overprint-content only affects the content of the element (not its
decorations, like borders and backgrounds). In both cases the children of the element are affected entirely, unless
overprint styles are applied to them as well via a non-auto value.

Value: auto | none | mode0 | mode1

Initial: auto

Inherited: No

auto

No overprinting mode is specified. In general this means the mode is not changed compared to the parent.

none

Disables overprinting. Painting a new color, no matter in which color space, causes unspecified colorants to be
erased at the corresponding positions. This means that in any area, only the color that was painted last is visible.

mode0

Standard overprint mode, also known as "OPM 0". In this mode source color component values replace values that
have been previously painted for the corresponding device colorants, regardless what the new values are.

mode1

Illustrator overprint mode, also known as "OPM 1" or "nonzero overprint mode". When the overprint mode is 1, tint
values of 0.0 for source color components do not change the corresponding components of previously painted
colors.

￭ More information: Overprinting (p. 107)

www.pdfreactor.com

E.9.1 Properties

363

-ro-pdf-page-rotation

When set to a value other than 'none' flags the page to be rotated by the viewer. This rotation only support 90°
increments. The value represents the side that the original top side should be on after rotation. 'start' and 'end' are based
on the reading 'direction', 'inside' and 'outside' on whether the page is left or right. When two values are set the first is
used for landscape pages and the second for portrait ones.

Value: [none | left | right | start | end | inside | outside | bottom]{1,2}

Initial: none

Applies To: @page

Inherited: No

pdf-shape-optimization

Sets whether shapes in the converted PDF should be optimized for certain behavior.

Value: none | visual

Initial: visual

Applies To: @-ro-preferences

Inherited: No

visual

Enable visual optimization. Shapes are written to the PDF in a way to ensure a consistent look in certain PDF
viewers. Without these modifications there may be different anti-aliasing for certain shapes.

none

Disable all shape optimizations.

-ro-pdf-signature-field-lock

Specifies whether a signature field will lock form elements as well as which ones.

Value: [none | all] [except <string>#]?

Initial: none

Applies To: Elements with a PDF signature field

Inherited: No

none

Signing the field does not lock any form elements.

all

Signing the field locks all form elements in the document.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

364

except

When followed by a list of strings, those are exceptions from 'none' or 'all', locking those fields or excluding them
from locking respectively.

￭ See also: -ro-pdf-signature-field-name

-ro-pdf-signature-field-name

Specifies whether PDF signature field will be created for this elements as well as its name.

Value: none | <string>

Initial: none

Inherited: No

none

No PDF signature field is created.

<string>

A PDF signature field with the specified name is created. (names should be unique)

￭ See also: -ro-pdf-form-field-flags , -ro-pdf-signature-field-lock

-ro-pdf-tag-actual-text

For the purpose of PDF tagging specifies the "actual text", i.e. the machine readable version of text that is not machine
readable by itself, e.g. due to stylizing. E.g. the actual text for "|-||=-|_|_[] \/\/[]|?|_|)" should be "hello world".
When not none, the value is a comma separated list, each item of which is resolved to a string. The first non-empty string
(i.e. not containing only spaces) is the result. Each item can consist of multiple parts delimited only by spaces, which are
concatenated to the string.
If there is no result the element has no "actual text", which is the default, as it has to be specified explicitly.

Value: [[auto | aria-name | aria-description | <string>]+]# | none

Initial: auto

Inherited: No

auto

Same as 'none'. "actual text" has to be specified explicitly.

aria-name

The ARIA name of the element or the empty string if none can be determined

aria-description

The ARIA description of the element or the empty string if none can be determined

<string>

A specific string or an attr function like attr(alt)

www.pdfreactor.com

E.9.1 Properties

365

none

The element explicitly has no "actual text".

￭ More information: Accessibility (p. 178)

-ro-pdf-tag-alt

For the purpose of PDF tagging specifies the alternative text for elements with no machine readable text, especially
images and other replaced elements like barcodes.
When not none, the value is a comma separated list, each item of which is resolved to a string. The first non-empty string
(i.e. not containing only spaces) is the result. Each item can consist of multiple parts delimited only by spaces, which are
concatenated to the string.
As a last resort, when no result was found for a replaced element, information from it is used to generate an alternative
text. However, this should be avoided as the results will not be helpful. A warning is logged if the information is minimal.

Value: [[auto | aria-name | aria-description | <string>]+]# | none

Initial: auto

Inherited: No

auto

First evaluates the property "-ro-alt-text". If that doesn't provide a result and the element is a replaced element, e.g.
an image or barcode, the ARIA name and ARIA description are tried.

aria-name

The ARIA name of the element or the empty string if none can be determined

aria-description

The ARIA description of the element or the empty string if none can be determined

<string>

A specific string or an attr function like attr(alt)

none

The element explicitly has no alternative text. Also no last resort methods will be used to determine one.

￭ See also: -ro-alt-text

￭ More information: Accessibility (p. 178)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

366

-ro-pdf-tag-expanded

For the purpose of PDF tagging specifies text that is the expanded form of the acronym or abbreviation that is the text
content element. This is important for screen readers to pronounce abbreviations correctly (see sample).
When not none, the value is a comma separated list, each item of which is resolved to a string. The first non-empty string
(i.e. not containing only spaces) is the result. Each item can consist of multiple parts delimited only by spaces, which are
concatenated to the string.
If there is no result the element has no expanded text, which is the default, as it has to be specified explicitly.

Value: [[auto | aria-name | aria-description | <string>]+]# | none

Initial: auto

Inherited: No

auto

Same as 'none'. Expanded text has to be specified explicitly.

aria-name

The ARIA name of the element or the empty string if none can be determined

aria-description

The ARIA description of the element or the empty string if none can be determined

<string>

A specific string or an attr function like attr(alt)

none

The element explicitly has no expanded text.

￭ More information: Accessibility (p. 178)

-ro-pdf-tag-form

For the purpose of PDF tagging specifies the type of non-interactive form fields.

Value: text | button | radiobutton | checkbox

Initial: text

Applies To: Non-interactive form elements

Inherited: No

text

The static form element is a text field.

button

The static form element is a button.

radiobutton

The static form element is a radio button.

www.pdfreactor.com

E.9.1 Properties

367

checkbox

The static form element is a checkbox.

￭ More information: Accessibility (p. 178)

-ro-pdf-tag-form-checked

For the purpose of PDF tagging specifies whether non-interactive checkbox or radio button form elements are checked.

Value: off | on | neutral

Initial: off

Applies To: Non-interactive form elements

Inherited: No

off

The element is unchecked.

on

The element is checked.

neutral

The element is half-checked.

￭ More information: Accessibility (p. 178)

-ro-pdf-tag-form-name

For the purpose of PDF tagging specifies the descriptive name of a form element (interactive or non-interactive), which is
used by screen readers and other interfaces.
When not none, the value is a comma separated list, each item of which is resolved to a string. The first non-empty string
(i.e. not containing only spaces) is the result. Each item can consist of multiple parts delimited only by spaces, which are
concatenated to the string.
If there is no result the form element has no descriptive name, which should be avoided.

Value: [[auto | aria-name | aria-description | <string>]+]# | none

Initial: auto

Applies To: Form elements

Inherited: No

auto

Tries the ARIA name and the ARIA description

aria-name

The ARIA name of the element or the empty string if none can be determined

aria-description

The ARIA description of the element or the empty string if none can be determined

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

368

<string>

A specific string or an attr function like attr(alt)

none

The element explicitly has no descriptive name. Also no last resort methods will be used to determine one.

￭ More information: Accessibility (p. 178)

-ro-pdf-tag-header-cell-scope

For the purpose of PDF tagging specifies what a table header cell (TH) relates to, its column or its row. The initial value of
'auto' means that the scope is estimated .

Value: auto | column | row

Initial: auto

Inherited: No

￭ More information: Accessibility (p. 178)

-ro-pdf-tag-table-summary

For the purpose of PDF tagging specifies a summary for a table.
When not none, the value is a comma separated list, each item of which is resolved to a string. The first non-empty string
(i.e. not containing only spaces) is the result. Each item can consist of multiple parts delimited only by spaces, which are
concatenated to the string.
If the table is directly preceded by a heading element the text content of that is used as a last resort.

Value: [[auto | aria-name | aria-description | <string>]+]# | none

Initial: auto

Applies To: Tables

Inherited: No

auto

Tries the ARIA name and the ARIA description

aria-name

The ARIA name of the element or the empty string if none can be determined

aria-description

The ARIA description of the element or the empty string if none can be determined

<string>

A specific string or an attr function like attr(alt)

none

The element explicitly has no summary. Also no last resort methods will be used to determine one.

￭ More information: Accessibility (p. 178)

www.pdfreactor.com

E.9.1 Properties

369

-ro-pdf-tag-type

Used for PDF tagging. Allows overriding the automatic determination of the tag type for this element. Supports explicit
overrides, semi-automatic ones and conditional ones. Please see the linked chapter for details.

Value: <pdf-tag-type>{2}#? , [auto | <pdf-tag-type>]?

Initial: auto

Inherited: No

￭ Types: <pdf-tag-type>

￭ More information: Controlling Tagging with CSS (p. 185), Tagged PDF (p. 95), Accessibility (p. 178)

-ro-pdf-text-rendering

This property allows to render text content as vector graphics. Since in this case PDF viewers do not need a font to
render the text content, no font is embedded in the document. The affected text is not selectable in PDF viewers and not
available to screen readers.
This also applies for text content in internal and external SVGs. In this case this property has to be set on the root
element of the SVG and affects all contained text.

Value: auto | visual-only

Initial: auto

Inherited: Yes

auto

Text is embedded using fonts.

visual-only

Text is rendered as vector graphics.

place-content

The shorthand property for 'align-content' and 'justify-content'. If the second value is omitted, the first value is used for
'justify-content'. If that value would be invalid, 'start' is used instead.

Value: <'align-content'> <'justify-content'>?

Initial: normal

Applies To: multi-line flex containers

Inherited: No

￭ MDN documentation: place-content

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

370

https://developer.mozilla.org/en-US/docs/Web/CSS/place-content

place-items

The shorthand property for 'align-items' and 'justify-items'. If the second value is omitted, the first is used for justify-items.

Value: <'align-items'> <'justify-items'>?

Initial:

Inherited: No

￭ MDN documentation: place-items

place-self

The shorthand property for 'align-self' and 'justify-self'. If the second value is omitted, the first value is used for 'justify-
self'.

Value: <'align-self'> <'justify-self'>?

Initial: auto

Inherited: No

￭ MDN documentation: place-self

position

The 'position' and 'float' properties determine which of the positioning algorithms is used to calculate the position of a
box.

Value: static | relative | absolute | fixed | running(<identifier>)

Initial: static

Applies To: all elements except table-column-group and table-column

Inherited: No

running(<identifier>) ☛

Moves the element out of the normal flow and into a page margin box as a running header or footer. The page
margin box needs to specify the element function with the same <identifier> used for the running element to
display it.

￭ MDN documentation: position

￭ See also: float

￭ More information: Running Elements (p. 125)

www.pdfreactor.com

E.9.1 Properties

371

https://developer.mozilla.org/en-US/docs/Web/CSS/place-items
https://developer.mozilla.org/en-US/docs/Web/CSS/place-self
https://developer.mozilla.org/en-US/docs/Web/CSS/position

-ro-position-origin

For positioned elements within a page, optionally changes the containing block to a specified box of the page: content-
box, padding-box, border-box, -ro-page-box (this is the margin or trim box), -ro-bleed-box. It also allows to position an
element within the column of a multi-column element.
This affects the inset properties (top, right, bottom, left) as well as percentage widths and heights.

Value: normal | [[page | column] || <box>]

Initial: normal

Applies To: positioned elements

Inherited: No

page

The element is positioned relative to its page. This value is used when only a <box> was specified.

column

When inside a multi-column element, the absolute positioned element is placed relative to the column. If the
element is not inside a multi-column, it behaves like 'normal'.

<box>

Valid values are content-box, padding-box, border-box, -ro-page-box (this is the margin or trim box), -ro-bleed-box.
The latter two are only valid for placing the element within the page.

￭ More information: Positioning Content Relative to Page Boxes (p. 152)

prefix

The prefix descriptor of the @counter-style rule specifies content that will be prepended to the marker representation.

Value: [<string> | <identifier>]

Initial: ""

Applies To: @counter-style

Inherited: No

￭ MDN documentation: prefix

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

372

https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/prefix

-ro-qrcode-errorcorrectionlevel

Deprecated in favor of new barcode functionality. Sets the error correction level of the QR code.

Value: L | M | Q | H

Initial: L

Applies To: QR Code elements

Inherited: No

L

Low level error correction. Up to 7% damaged data can be restored.

M

Medium level error correction. Up to 15% damaged data can be restored.

Q

Quartile level error correction. Up to 25% damaged data can be restored.

H

High level error correction. Up to 30% damaged data can be restored.

￭ Deprecated! Use -ro-barcode instead.

-ro-qrcode-forcedcolors

Deprecated in favor of new barcode functionality. Defines whether the colors of the QR code are black and white or
based on the text color and the background.

Value: normal | none

Initial: normal

Applies To: QR Code elements

Inherited: No

normal

QR code is black on white.

none

Instead of black, the value of the CSS property color is used to paint the squares. The background is visible
instead of the white squares.

￭ Deprecated! Use -ro-barcode instead.

www.pdfreactor.com

E.9.1 Properties

373

-ro-qrcode-quality

Deprecated in favor of new barcode functionality. By default, The QR code is built from multiple squares. This method is
fast and
looks correct in print. However, in PDF viewers on screen the edges of neighboring squares may be visible.

Value: normal | high

Initial: normal

Applies To: QR Code elements

Inherited: No

normal

The QR code is built from multiple squares.

high

The squares are combined into one object, ensuring a seamless look, at the cost of performance.

￭ Deprecated! Use -ro-barcode instead.

-ro-qrcode-quietzonesize

Deprecated in favor of new barcode functionality. Sets the size of the quiet (empty) zone around the QR code in modules
(QR
code "square" widths).

Value: <integer>

Initial: 1

Applies To: QR Code elements

Inherited: No

<integer>

Possible values are 0 (no quiet zone) and positive integers.

￭ Deprecated! Use -ro-barcode instead.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

374

-ro-radiobuttonelement-group

Defines the group name of radio buttons. In most cases, it is used with the attr-function. This is done automatically in
HTML documents.

Value: none | <string>

Initial: none

Applies To: Form elements

Inherited: No

￭ More information: Accessibility (p. 178)

range

When defining custom counter styles, the range descriptor lets the author specify a range of counter values over which
the style is applied.

Value: [[<integer> | infinite]{2}]# | auto

Initial: auto

Applies To: @counter-style

Inherited: No

￭ MDN documentation: range

-ro-rasterization

This property configures in which cases SVGs and Canvas elements should be rasterized. It may disable some
functionalities of those elements to avoid that. (Canvas shadows are converted into separate images, not affecting other
parts of the Canvas, for both 'fallback' and 'avoid')

Value: fallback | avoid | always

Initial: fallback

Applies To: SVG and Canvas elements

Inherited: Yes

fallback

The SVG or Canvas is only rasterized when it uses features that are not supported by PDF vector graphics:
masks, filters or non-default composites for SVG; non-default composites and ImageData access for Canvas.

avoid

Avoids rasterization of the entire SVG or Canvas by disabling functionality that is not supported by PDF vector
graphics.

www.pdfreactor.com

E.9.1 Properties

375

https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/range

always

Rasterizes the Canvas in any case. (does not apply to SVG)

￭ More information: SVG (p. 71), Canvas Element (p. 80)

-ro-rasterization-max-size

Defines a maximum amount of pixels a rasterization image may have. If the limit would be exceeded, the image resolution
is reduced. This property can be used to reduce the required memory for rasterized content.

Value: auto | none | <number>

Initial: auto

Inherited: Yes

auto

The default limit. Behaves the same as if the value was 2.

none

Disables the limit. This should be used with caution, especially if it is combined with "-ro-rasterization-
supersampling", as large images have a significant impact on the required memory.

<number>

A number greater than zero which represents the maximum amount of pixels in millions (megapixels).

￭ See also: box-shadow , filter , -ro-rasterization-supersampling , text-shadow

-ro-rasterization-supersampling

This property configures the resolution of the rasterization of SVGs and Canvas elements or elements with a CSS filter,
box-shadows or text-shadows set. Higher resolution factors increase the quality of the image, but also increase the
conversion time and the size of the output documents.

Value: <integer>

Initial: 2

Applies To: Rasterized elements (see description)

Inherited: Yes

<integer>

The resolution of the rasterization is 96dpi multiplied by this factor. For example, a value of 2 means 192dpi.
Accepted values are all positive integers, however, canvas will clip values larger than 4.

￭ More information: SVG (p. 71), Canvas Element (p. 80)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

376

-ro-registration-mark-offset

Specifies the gap between the trim box and the registration mark. Negative values are not allowed.

Value: <length> | <percentage>

Initial: 100%

Applies To: @page

Inherited: No

<length>

Specifies the gap as an absolute length.

<percentage>

Specifies the gap as a percentage value relative to the bleed. A value of 100% positions the inner side of the
registration mark exactly at the outer edge of the bleed.

-ro-registration-mark-size

This property can be used to set the size of the registration mark. Negative values are not allowed. A value of zero
disables the registration mark.

Value: <length>

Initial: 0.5cm

Applies To: @page

Inherited: No

-ro-replacedelement

Turns an element into a so-called 'replaced element' that displays an image or other external or embedded content.

Value: none | image | barcode | qrcode | embedded-svg

Initial: none

Inherited: No

image

Creates an image replaced element. Used in combination with -ro-source.

barcode

Creates a barcode replaced element. Used in combination with -ro-barcode-type.

qrcode

Creates a legacy QR code replaced element. The QR code is read from an existing "href" attribute or the text
content of the element.

www.pdfreactor.com

E.9.1 Properties

377

embedded-svg

Creates an SVG replaced element from embedded SVG content.

￭ See also: -ro-source

￭ More information: Compound Formats (p. 70)

right

Like 'top', but specifies how far a box's right margin edge is offset to the left of the right edge of the box's containing
block. For relatively positioned boxes, the offset is with respect to the right edge of the box itself.

Value: <length> | <percentage> | auto

Initial: auto

Applies To: positioned elements

Inherited: No

￭ MDN documentation: right

￭ See also: inset-*

row-gap
grid-row-gap

Sets the gap between rows.

Value: <length> | <percentage> | normal

Initial: normal

Applies To: grid containers

Inherited: No

￭ MDN documentation: row-gap

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

378

https://developer.mozilla.org/en-US/docs/Web/CSS/right
https://developer.mozilla.org/en-US/docs/Web/CSS/row-gap

-ro-rowspan

The property to determine the row span of a cell. The content contains the number of rows spanned by this cell.

Value: <integer>

Initial: 1

Applies To: table-cell elements

Inherited: No

-ro-scale-content

This property sets an optional scaling factor for the content. Please note that the value is taken from the first page and
applied uniformly to the entire document.

Value: none | auto | <percentage>

Initial: none

Applies To: @page (first page only)

Inherited: No

<percentage>

A percent value which is treated as a scaling factor for the content.

auto

The scale factor is determined based on the content of the document, for the purpose of shrink-to-fit. It is ensured
that no block overflows its respective page content width or height. (The entire document is analyzed to determine
the required factor.)

￭ More information: Shrink-to-Fit (p. 155)

shape-image-threshold

Defines the alpha channel threshold above text must wrap around the respective pixel of an image, with 0 being
completely transparent and 1 being completely opaque.

Value: <alphavalue>

Initial: 0

Applies To: floats

Inherited: No

￭ MDN documentation: shape-image-threshold

www.pdfreactor.com

E.9.1 Properties

379

https://developer.mozilla.org/en-US/docs/Web/CSS/shape-image-threshold

shape-margin

Sets a margin for the shape created by the CSS property shape-outside.

Value: <length> | <percentage>

Initial: 0

Applies To: floats

Inherited: No

￭ MDN documentation: shape-margin

shape-outside

Defines a shape for floated box around which adjacent inline content should wrap.

Value: none | [<basic-shape> || <shape-box>] | <image> | -ro-self

Initial: none

Applies To: floats

Inherited: No

-ro-self

Similar to specifying an image, but the shape is derived from the float element's content, e.g. text is wrapped
around a large letter. Also uses the value of shape-image-threshold.

￭ MDN documentation: shape-outside

-ro-sidenote-align

Defines the vertical alignment of a sidenote in its sidenote area. The actual final vertical position of the sidenote depends
on whether it has enough space and will be moved up or down if necessary.

Value: [start | end | stack] | [[baseline | container-start | container-end] strict?]

Initial: baseline

Applies To: Sidenotes

Inherited: No

baseline

The baselines of the sidenote and its origin line should be at the same vertical position.

container-start

The sidenote's top should be placed at the same height as the block container element's top from which it
originates. The border rectangles are used for this alignment.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

380

https://developer.mozilla.org/en-US/docs/Web/CSS/shape-margin
https://developer.mozilla.org/en-US/docs/Web/CSS/shape-outside

container-end

The sidenote's bottom should be placed at the same height as the block container element's bottom from which it
originates. The border rectangles are used for this alignment. Note that the sidenote may still be pushed down to
avoid overlapping with a previous sidenote, so consider also setting 'strict' when using this alignment.

stack

The sidenote will be placed directly under the previous sidenote (or at top if it is the first one). They are basically
stacked on top of each other.

start

The sidenote will placed at the top of the sidenote area or directly below of previous start-aligned sidenotes. Note
that start-aligned sidenotes will always be above sidenotes with any other alignment, no matter their DOM order.

end

The sidenote will placed at the bottom of the sidenote area or directly above of previous end-aligned sidenotes.
Note that end-aligned sidenotes will always be below sidenotes with any other alignment, no matter their DOM
order.

strict

This value can only applies for alignments that depend on the sidenote's origin (e.g. 'baseline', but not 'start'). As
long as there is enough space in the sidenote area, the sidenote will not be pushed away from its intended
position. Overlapping is avoided by moving previous sidenotes up.

￭ More information: Sidenotes (p. 134)

-ro-sidenote-avoid

Defines whether sidenotes should avoid positions that are next to the element. In that case they will be moved up or
down, if there is enough space left. This is useful for elements that should be wider than other content, overflowing into
the sidenote area.

Value: none | [<box> || [<sidenote-side> | both]]

Initial: none

Inherited: No

<box>

The element's box that determines the vertical position and height that is considered as overlapping with
sidenotes. Allowed values are 'border-box', 'padding-box', 'content-box' and 'margin-box'. If omitted, 'border-box' is
used.

<sidenote-side>

Accepts the same values as the -ro-sidenote() function.

￭ See also: -ro-sidenote

www.pdfreactor.com

E.9.1 Properties

381

-ro-sidenote-offset

This allows to offset the base position of a sidenote by a certain distance. Positive lengths shift down, negative lengths
shift up. This property has only effect on alignments that depend on the position of the origin, i.e. 'baseline', 'container-
start' and 'container-end'.

Value: <length> | <percentage>

Initial: 0

Applies To: sidenotes

Inherited: No

￭ More information: Sidenotes (p. 134)

size

Specifies the dimensions of pages, i.e. their CSS margin area size which is equivalent to their PDF TrimBox size.
Possible values are lengths, for width and height, or named sizes, like A4 or letter.

Value: auto | <length>{1,2} | [<page-size> || [portrait | landscape]]

Initial: auto

Applies To: @page

Inherited: No

<length>

The page size is set to the given absolute dimensions. If only one length value is specified, it sets both the width
and height of the page (i.e. it is a square). If two length values are specified, the first establishes the width, and the
second one the height. Negative lengths are invalid.

<page-size>

The page size is set to a named one, like A4, A5, letter or legal. See the linked chapter for a full list of valid values.
When no orientation is specified the default one is portrait.

landscape

Specifies that the named page size is oriented in landscape, i.e. the longer sides of the page are horizontal. If no
'<page-size>' is specified, the default size A4 is used.

portrait

Specifies that the named page size is oriented in portrait, i.e. the shorter sides of the page are horizontal. If no
'<page-size>' is specified, the default size A4 is used.

auto

Equivalent to specifying A4.

￭ More information: Supported Page Size Formats (p. 247), PDF Page Boxes (p. 149)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

382

-ro-source

Specifies the URL of an image. Used in combination with -ro-replacedelement. This is done automatically in HTML
documents.

Value: none | <url> | [<string>]+

Initial: none

Inherited: No

￭ See also: -ro-replacedelement

￭ More information: Images (p. 70)

-ro-source-area

Specifies which area of a PDF page should be embedded as an image. Used in combination with -ro-source. Possible
values are 'auto' as well as the strings "trim", "crop", "art", "bleed" and "media". The strings set the area to the specified
PDF page box. 'auto' has the same effect as "media". The fallback behavior when the specified page box does not exist is
'auto'.

Value: auto | <string>

Initial: auto

Inherited: No

￭ More information: PDF Pages as Images (p. 81)

-ro-source-page

Specifies which page of a PDF should be embedded as an image. Used in combination with -ro-source.

Value: <integer>

Initial: 1

Inherited: No

<integer>

The number of the page that is shown, with 1 being the first page. Negative numbers count from the document
end, with -1 being the last page. A value of 0 is treated like the default value, which is 1.

￭ More information: PDF Pages as Images (p. 81)

www.pdfreactor.com

E.9.1 Properties

383

string-set

The 'string-set' property accepts a comma-separated list of named strings. Each named string is followed by a content list
that specifies which text to copy into the named string. Whenever an element with value of 'string-set' different from
'none' is encountered, the named strings are assigned their respective value.

Value: [<identifier> [<string> | <named-string> | <quote> | counter() | counters() | content() |
target-text() | target-counters() | target-counter()]+]# | none

Initial: none

Inherited: No

<string>

a string, e.g. "foo"

<counter>

counter() or counters() function

<content> ☛

the 'content()' function returns the content of elements and pseudo-elements.

￭ More information: Named Strings (p. 129)

-ro-subject

Sets the subject in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to
multiple elements the values are concatenated, separated by a comma.)

Value: none | [<string> | content()]+

Initial: none

Applies To: all elements

Inherited: No

none

Does not set a subject.

<string>

Sets the specified string as subject.

content()

Sets the subject from the content of the element.

￭ See also: -ro-author , -ro-keywords , -ro-title

￭ More information: Metadata (p. 92)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

384

suffix

Value: [<string> | <identifier>]

Initial: "."

Applies To: @counter-style

Inherited: No

￭ MDN documentation: suffix

symbols

The symbols CSS descriptor is used to specify the symbols that the specified counter system will use to construct
counter representations.

Value: [<string> | <identifier>]+

Initial: ""

Applies To: @counter-style

Inherited: No

￭ MDN documentation: symbols

system

The system descriptor specifies the algorithm to be used for converting the integer value of a counter to a string
representation. Used in the counter-style at-rule.

Value: cyclic | numeric | alphabetic | symbolic | additive | [fixed <integer>?] | [extends
<identifier>]

Initial: symbolic

Applies To: @counter-style

Inherited: No

￭ MDN documentation: system

www.pdfreactor.com

E.9.1 Properties

385

https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/suffix
https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/symbols
https://developer.mozilla.org/en-US/docs/Web/CSS/@counter-style/system

-ro-tab-size

This property determines the tab size used to render preserved tab characters (U+0009). Integers represent the measure
as multiples of the space character's advance width (U+0020). Negative values are not allowed.

Value: <integer>

Initial: 8

Applies To: block containers

Inherited: Yes

table-layout

The 'table-layout' property controls which algorithm is used to lay out tables, including their rows and cells. For
performance reasons, excessively nested HTML table elements are set to 'fixed' instead of the initial value 'auto' unless
'auto' is explicitly set.

Value: auto | fixed

Initial: auto

Applies To: 'table' and 'inline-table' elements

Inherited: No

￭ MDN documentation: table-layout

-ro-target-candidate

Only has any affect when segmentation is enabled and there are "target-counter(s)" or "target-text" functions using "attr"
or "-ro-attr" functions to determine their targets.
For cross-references to be able to access targets in previous segments, the data of these targets must be kept in
memory, which is enabled using this property on the target elements.
Please note that using the values "text" or "all" on an excessive amount of elements or on elements with a lot of text
content can drastically increase memory consumption.

Value: none | all | counter | text

Initial: none

Inherited: No

none

The text and counter data of the element can not be accessed from later segments.

all

The text and counter data of the element can be accessed from later segments.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

386

https://developer.mozilla.org/en-US/docs/Web/CSS/table-layout

counter

The counter data of the element can be accessed from later segments.

text

The text of the element can be accessed from later segments.

￭ More information: Segmentation (p. 170)

text-align

This property describes how the inline-level content of a block is aligned along the inline axis if the content does not
completely fill the line box.

Value: start | end | left | right | center | justify | match-parent | justify-all

Initial: start

Applies To: block containers

Inherited: Yes

￭ MDN documentation: text-align

￭ See also: text-align-all , text-align-last

text-align-all

This longhand property of 'text-align' specifies the text alignment of all lines inside the block container, except for the last
line, if 'text-align-last' is set to a non-auto value. Generally, it is recommended to use the shorthand 'text-align' instead of
this property.

Value: start | end | left | right | center | justify | match-parent

Initial: start

Applies To: block containers

Inherited: Yes

￭ See also: text-align , text-align-last

www.pdfreactor.com

E.9.1 Properties

387

https://developer.mozilla.org/en-US/docs/Web/CSS/text-align

text-align-last

This property describes how the last line of a block or a line right before a forced line break is aligned. If a line is also the
first line of the block or the first line after a forced line break, then 'text-align-last' takes precedence over 'text-align-all'.
For the individual values, see their corresponding description for 'text-align'.

Value: auto | start | end | left | right | center | justify

Initial: auto

Applies To: block containers

Inherited: Yes

￭ MDN documentation: text-align-last

￭ See also: text-align , text-align-all

text-decoration

This property is a shorthand property for setting the text decoration type, style, color and thickness of a box.

Value: <'text-decoration-line'> || <'text-decoration-thickness'> || <'text-decoration-style'> || <'text-
decoration-color'>

Initial: see individual properties

Applies To: all elements

Inherited: No

￭ MDN documentation: text-decoration

text-decoration-color

Value: <color>

Initial: currentColor

Applies To: all elements

Inherited: No

￭ MDN documentation: text-decoration-color

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

388

https://developer.mozilla.org/en-US/docs/Web/CSS/text-align-last
https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration
https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration-color

text-decoration-line

Value: none | [underline || overline || line-through || blink]

Initial: none

Applies To: all elements

Inherited: No

￭ MDN documentation: text-decoration-line

text-decoration-style

Value: solid | double | dotted | dashed

Initial: solid

Applies To: all elements

Inherited: No

￭ MDN documentation: text-decoration-style

text-decoration-thickness

Value: auto | from-font | <length> | <percentage>

Initial: auto

Applies To: all elements

Inherited: No

￭ MDN documentation: text-decoration-thickness

www.pdfreactor.com

E.9.1 Properties

389

https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration-line
https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration-style
https://developer.mozilla.org/en-US/docs/Web/CSS/text-decoration-thickness

text-indent

This property specifies the indentation of the first line of text in a block container.

Value: <length> | <percentage>

Initial: 0

Applies To: block containers

Inherited: Yes

￭ MDN documentation: text-indent

text-overflow

Determines how content that overflows its line is rendered, when overflow of its paragraph has a other value than visible.

Value: clip | ellipsis | -ro-scale-down

Initial: clip

Applies To: block containers

Inherited: No

-ro-scale-down

Visually reduces the size of the text until there is no more overflow. The origin of that scale transform depends on
two other properties, 'direction' for its horizontal position, which is always on the start side, and 'align-content' for
the vertical position, which can be 'start', 'end', 'center', 'baseline' (default) and 'stretch'. While the scale factor is
based only on horizontal overflow, both directions are scaled by the same amount, except for a 'align-content'
value of 'stretch', in which case there is only horizontal scaling.

￭ MDN documentation: text-overflow

￭ See also: overflow

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

390

https://developer.mozilla.org/en-US/docs/Web/CSS/text-indent
https://developer.mozilla.org/en-US/docs/Web/CSS/text-overflow

-ro-text-replace

Replaces instances of text in layout. The first string is the pattern to be replaced and must be non-empty. The second
string is the replacement text. Optionally the replacement point and method can be changed from their defaults of "white-
space" and "strict" respectively. The latter two are changed individually for every replacement in a list.

Value: none | [<string> <string> [[source | white-space | text-transform | shaped | hybrid-layout] ||
[strict | ignore-case | ignore-variants | regex | transliterate]]?]#

Initial: none

Inherited: Yes

source

replacement point: before any other processing.

white-space

replacement point: after the "white-space" property was applied (default).

text-transform

replacement point: after the "white-space" and "text-transform" properties were applied.

shaped

replacement point: after the "white-space" and "text-transform" properties as well as shaping (e.g. for Arabic) was
applied.

hybrid-layout

replacement point: during inline layout, using the original character for logical and the replacement for visual parts
of the layout. The replacement must have the same length as the original.

strict

replacement method: simple case-sensitive (default).

ignore-case

replacement method: ignoring case as well as form (e.g. of Arabic characters due to shaping).

ignore-variants

replacement method: ignoring variants of any kind, including case, form, accents and diaereses.

regex

replacement method: using regular expression pattern.

transliterate

replacement method: transliteration. Use scripts as input and output, e.g.: "any" "latin" transliterate

￭ More information: List of transliterate input/output values (p. 261)

www.pdfreactor.com

E.9.1 Properties

391

text-shadow

Adds shadows to text.

Value: none | [<length>{2,3} && <color>?]#

Initial: none

Applies To: text

Inherited: Yes

￭ MDN documentation: text-shadow

text-transform

This property controls capitalization effects of an element's text.

Value: capitalize | uppercase | lowercase | none

Initial: none

Applies To: text

Inherited: Yes

￭ MDN documentation: text-transform

text-underline-offset

Value: auto | <length> | <percentage>

Initial: auto

Applies To: all elements

Inherited: Yes

￭ MDN documentation: text-underline-offset

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

392

https://developer.mozilla.org/en-US/docs/Web/CSS/text-shadow
https://developer.mozilla.org/en-US/docs/Web/CSS/text-transform
https://developer.mozilla.org/en-US/docs/Web/CSS/text-underline-offset

text-underline-position

Value: auto | [from-font | under]

Initial: auto

Applies To: all elements

Inherited: Yes

￭ MDN documentation: text-underline-position

-ro-title

Sets the title in the metadata of the PDF document. Multiple values are concatenated to one string. (When applied to
multiple elements the values are concatenated, separated by a comma.)

Value: none | [<string> | content()]+

Initial: none

Applies To: all elements

Inherited: No

none

Does not set a title.

<string>

Sets the specified string as title.

content()

Sets the title from the content of the element.

￭ See also: -ro-author , -ro-keywords , -ro-subject

￭ More information: Metadata (p. 92)

www.pdfreactor.com

E.9.1 Properties

393

https://developer.mozilla.org/en-US/docs/Web/CSS/text-underline-position

top

This property specifies how far an absolutely positioned box's top margin edge is offset below the top edge of the box's
containing block. For relatively positioned boxes, the offset is with respect to the top edges of the box itself (i.e., the box
is given a position in the normal flow, then offset from that position according to these properties).

Value: <length> | <percentage> | auto

Initial: auto

Applies To: positioned elements

Inherited: No

￭ MDN documentation: top

￭ See also: inset-*

transform

This property contains a list of transform functions. The final transformation value for a coordinate system is obtained by
converting each function in the list to its corresponding matrix, then multiplying the matrices.
Note that only 2D transforms are supported.

Value: none | <transform-function>+

Initial: none

Applies To: transformable elements

Inherited: No

￭ MDN documentation: transform

transform-origin

This property defines the point of origin of transformations.
If only one value is specified, the second value is assumed to be center. A third value for setting the Z offset is not
supported.

Value: [left | center | right | top | bottom | <percentage> | <length>] | [left | center | right |
<percentage> | <length>] [top | center | bottom | <percentage> | <length>] | [[center | left |
right] && [center | top | bottom]]

Initial: 50% 50%

Applies To: transformable elements

Inherited: No

￭ MDN documentation: transform-origin

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

394

https://developer.mozilla.org/en-US/docs/Web/CSS/top
https://developer.mozilla.org/en-US/docs/Web/CSS/transform
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-origin

-ro-truncate-margin-after-break

Defines the rules by which the margins of blocks at the beginning of a page, column or similar should be truncated to
zero.

Value: none | auto | always

Initial: auto

Applies To: pages, multi-column containers, regions, root elements of iframes

Inherited: Yes

none

The margins are never truncated to zero.

auto

The behavior defined by the CSS specifications. The margins are truncated to zero if the page break has not been
forced. The margin on the first page and after a forced break is preserved.

always

The margins of blocks at the top of a page are always truncated to zero. This is the behavior of PDFreactor prior to
version 9.

unicode-bidi

This property relates to the handling of bidirectional text in a document.

Value: normal | embed | isolate | bidi-override | isolate-override | plaintext

Initial: normal

Applies To: all elements

Inherited: No

normal

The element does not open an additional level of embedding with respect to the bidirectional algorithm. For inline
elements, implicit reordering works across element boundaries.

embed

If the element is inline, this value opens an additional level of embedding with respect to the bidirectional
algorithm. The direction of this embedding level is given by the 'direction' property. Inside the element, reordering
is done implicitly. This corresponds to adding a LRE (U+202A; for 'direction: ltr') or RLE (U+202B; for 'direction: rtl')
at the start of the element and a PDF (U+202C) at the end of the element.

bidi-override

For inline elements this creates an override. For block container elements this creates an override for inline-level
descendants not within another block container element. This means that inside the element, reordering is strictly
in sequence according to the 'direction' property; the implicit part of the bidirectional algorithm is ignored. This
corresponds to adding a LRO (U+202D; for 'direction: ltr') or RLO (U+202E; for 'direction: rtl') at the start of the
element or at the start of each anonymous child block box, if any, and a PDF (U+202C) at the end of the element.

www.pdfreactor.com

E.9.1 Properties

395

isolate-override

This combines the isolation behavior of isolate with the directional override behavior of bidi-override: to
surrounding content, it is equivalent to isolate, but within the box content is ordered as if bidi-override were
specified. It effectively nests a directional override inside an isolated sequence.

plaintext

This value behaves as isolate except that for the purposes of the Unicode bidirectional algorithm, the base
directionality of each of the box’s bidi paragraphs (if a block container) or isolated sequences (if an inline) is
determined by following the heuristic in rules P2 and P3 of the Unicode bidirectional algorithm (rather than by
using the direction property of the box).

￭ MDN documentation: unicode-bidi

￭ See also: direction

￭ More information: Right-to-Left (p. 161)

vertical-align

This property affects the vertical positioning inside a line box of the boxes generated by an inline-level element.

Value: baseline | sub | super | top | text-top | middle | bottom | text-bottom | <percentage> |
<length>

Initial: baseline

Applies To: inline-level and 'table-cell' elements

Inherited: No

￭ MDN documentation: vertical-align

visibility

The 'visibility' property specifies whether the boxes generated by an element are rendered. Invisible boxes still affect
layout (set the 'display' property to 'none' to suppress box generation altogether). The value 'collapse' is not supported for
flex items.

Value: visible | hidden | collapse

Initial: visible

Applies To: all elements

Inherited: Yes

￭ MDN documentation: visibility

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

396

https://developer.mozilla.org/en-US/docs/Web/CSS/unicode-bidi
https://developer.mozilla.org/en-US/docs/Web/CSS/vertical-align
https://developer.mozilla.org/en-US/docs/Web/CSS/visibility

white-space

This property declares how white space inside the element is handled.

Value: normal | pre | nowrap | pre-wrap | pre-line

Initial: normal

Applies To: text

Inherited: Yes

￭ MDN documentation: white-space

widows

The 'widows' property sets the minimum number of lines in a block container that must be shown at the top of a page,
region, or column.

Value: <integer>

Initial: 2

Applies To: block container elements

Inherited: Yes

￭ MDN documentation: widows

￭ More information: Widows & Orphans (p. 118)

width

This property specifies the content width of boxes.

Value: auto | <length> | <percentage> | min-content | max-content | fit-content

Initial: auto

Applies To: all elements but non-replaced inline elements, table rows, and row groups

Inherited: No

￭ MDN documentation: width

www.pdfreactor.com

E.9.1 Properties

397

https://developer.mozilla.org/en-US/docs/Web/CSS/white-space
https://developer.mozilla.org/en-US/docs/Web/CSS/widows
https://developer.mozilla.org/en-US/docs/Web/CSS/width

-ro-width

This property allows the automatic resizing of form controls according to
their content. If this property is set to auto, the form controls' width automatically adjusts according to its content.

Value: auto | none

Initial: none

Applies To: Form elements

Inherited: No

auto

Automatically adjusts the width of a form control if the contents' width exceeds the width defined for the form
control.

word-spacing

Allows to modify the spacing between words.

Value: normal | <length> | <percentage>

Initial: normal

Inherited: Yes

￭ MDN documentation: word-spacing

word-wrap

This property specifies whether the UA may arbitrarily break within a word to prevent overflow when an otherwise
unbreakable string is too long to fit within the line box. It only has an effect when 'white-space' allows wrapping. The
difference between 'break-word' and 'anywhere' is that only the latter influences layouts that depend on the minimum
sizes of elements.
Note that this property is identical to 'overflow-wrap' and for legacy reasons it is handled as a shorthand for that property.

Value: <'overflow-wrap'>

Initial: normal

Inherited: Yes

￭ See also: overflow-wrap

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

398

https://developer.mozilla.org/en-US/docs/Web/CSS/word-spacing

z-index

For a positioned box, the 'z-index' property specifies:
1. The stack level of the box in the current stacking context.
2. Whether the box establishes a stacking context.

Value: <integer> | auto

Initial: auto

Applies To: positioned elements and grid items

Inherited: No

￭ MDN documentation: z-index

E.9.2 Functions

attr()
-ro-attr()

Creates a reference to the attribute of an element with the specified name.

￭ Parameters

attr(<attr-name> <type-or-unit>? [, <attr-fallback>]?)

<attr-name>

The attribute name

<type-or-unit>optional

Specifies how the attribute should be interpreted. Default is 'string'.

<attr-fallback>optional

If the attribute could not found, this value is used instead.

￭ MDN documentation: attr

-ro-attr-ancestor()

Allows to retrieve an attribute value as a string from the closest ancestor (including self) in the parent chain matching the
specified node name. If no name was specified or no matching ancestor was found, the attribute value of the original
element is retrieved (if it exists).

￭ Parameters

-ro-attr-ancestor(<attr-name> [, <element-name>]?)

attr-name

The name of the attribute. Its value will be returned as a string. If it is not found, an empty string is returned.

element-nameoptional

If specified, the attribute value is retrieved from the closest ancestor element (or self) with that name or from the
element itself if element-name matches. If no element is found, the original element itself is used.

www.pdfreactor.com

E.9.2 Functions

399

https://developer.mozilla.org/en-US/docs/Web/CSS/z-index
https://developer.mozilla.org/en-US/docs/Web/CSS/attr

blur()

Applies a Gaussian blur.

￭ Parameters

blur(radius)

radius <length>

The radius of the blur. The blur can differ in x and y axis, by specifying a second length for the y axis. Negative
values are not allowed.

￭ MDN documentation: blur

brightness()

Applies a multiplier to the brightness of an element.

￭ Parameters

brightness(factor)

factor <Number | Percentage>

￭ MDN documentation: brightness

calc()

Computes mathematical expressions with addition (+), subtraction (-), multiplication (*), and division (/). The result can
then be used for a wide range of properties.
It can be used by any property that expects a length, frequency, angle, time, number or integer value.
NOTE: The + and - operators must be surrounded with spaces.

￭ Parameters

calc(expression)

expression

The mathematical expression. A whitespace is required on both sides of + and - operators. Several terms can be
chained (e.g. calc(50% - 2cm + 8px);).

￭ MDN documentation: calc

circle()

Defines a circle

￭ Parameters

circle([<shape-radius>]? [at <position>]?)

shape-radiusoptional <Length | Percentage | Identifier>

Defines the radius of the circle, closest-side if omitted. Valid identifiers are closest-side (uses the closest distance
from the center of the circle to a border of the reference box) and farthest-side (uses the farthest distance to a
border of the reference box). Negative values are invalid.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

400

https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/blur
https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/brightness
https://developer.mozilla.org/en-US/docs/Web/CSS/calc

positionoptional

Determines the center of the circle. Uses the same syntax as the 'background-position' property. Default value is
'center'.

￭ MDN documentation: basic-shape: circle()

cmyk()

CMYK colors for printing.

￭ Parameters

cmyk(cyan, magenta, yellow, key[, alpha]?)

cyan <Number | Percentage>

Cyan color component. Number between 0 and 1 or percentage.

magenta <Number | Percentage>

Magenta color component. Number between 0 and 1 or percentage.

yellow <Number | Percentage>

Yellow color component. Number between 0 and 1 or percentage.

key <Number | Percentage>

Key (usually black) color component. Number between 0 and 1 or percentage.

alphaoptional <Number | Percentage>

Alpha value of the color. Number between 0 and 1 or percentage.

￭ More information: Colors (p. 68)

content()

Allows to get the content of an element or pseudo-element.

￭ Parameters

content(text, before, after, first-letter)

text

The text content of the element. This is the default value.

before

The content of the ::before pseudo-element.

after

The content of the ::after pseudo-element.

first-letter

The first-letter of the element's content text.

￭ More information: Named Strings (p. 129)

www.pdfreactor.com

E.9.2 Functions

401

https://developer.mozilla.org/en-US/docs/Web/CSS/basic-shape#circle()

contrast()

Adjusts the contrast of the element.

￭ Parameters

contrast(factor)

factor <Number | Percentage>

￭ MDN documentation: contrast

counter()

Refers to the value of a counter.

￭ Parameters

counter(<identifier> [, <counter-style>]?)

identifier

The name of the counter

identifieroptional

Specifies the style of the number. Default is 'decimal'.

￭ More information: Counters (p. 122)

-ro-counter-offset()

Works like the counter function, but additionally modifies the result by the specified offset.

￭ Parameters

-ro-counter-offset(<identifier>, <integer> [, <counter-style>]?)

counter <Identifier>

The name of the counter

offsetoptional <Integer>

The integer by which the counter value is modified.

counter-styleoptional

Used to format the result, see the property 'list-style-type' for more information on the keywords. Default is
'decimal'.

counters()

Retrieves the values of all counters of the specified name in scope of this element, from outermost to innermost with the
specified string inserted between them.

￭ Parameters

counters(<identifier>, <string> [, <counter-style>]?)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

402

https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/contrast

drop-shadow()

Applies a drop-shadow to the element.

￭ Parameters

drop-shadow(<color>? && <length>{2,3})

￭ MDN documentation: drop-shadow

element()

This function places an element with a name specified via the running() function, in a page margin box.

￭ Parameters

element(<identifier> [, [first | start | last | first-except]]?)

custom-ident

The name of the running element as identifier, which is specified using the position property with the running()
function.

first | start | last | first-exceptoptional

Keywords that, in a case where there are multiple assignments on a page, specify which one should be used.

￭ More information: Running Elements (p. 125)

ellipse()

Defines an ellipse

￭ Parameters

ellipse([<shape-radius>{2}]? [at <position>]?)

shape-radiusoptional <Length | Percentage | Identifier>

Define the horizontal and vertical radius of the ellipse, in this order. They default to closest-side if omitted, negative
values are invalid. Valid identifiers are closest-side (uses the distance from the ellipses center to the closest border
of the reference box which is orthogonal to the respective radius) and farthest-side (uses the farthest distance to
the respective border of the reference box).

positionoptional

Determines the center of the ellipse. Uses the same syntax as the 'background-position' property. Default value is
'center'.

￭ MDN documentation: basic-shape: ellipse()

fit-content()

￭ Parameters

fit-content(<length> | <percentage>)

￭ MDN documentation: fit-content

www.pdfreactor.com

E.9.2 Functions

403

https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/drop-shadow
https://developer.mozilla.org/en-US/docs/Web/CSS/basic-shape#ellipse()
https://developer.mozilla.org/en-US/docs/Web/CSS/fit-content

gray()
grey()

Allows to specify a gray color

￭ Parameters

gray(gray[, alpha]?)

gray <Number | Percentage>

The shade of gray. A number between 0 and 1 or percentage.

alphaoptional <Number | Percentage>

The alpha channel. A number between 0 and 1 or percentage.

￭ More information: Colors (p. 68)

grayscale()

Reduces the contrast of the element, until it is completely gray.

￭ Parameters

grayscale(factor)

factor <Number | Percentage>

With a value of 1 or 100%, the element is in grayscale.

￭ MDN documentation: grayscale

hsl()

Specifies a color using hue, saturation and lightness. The alpha channel can be specified optionally.

￭ Parameters

hsl(hue, saturation, lightness[, alpha]?)

hue <Number | Angle>

The hue of the color. Set using an angle of the color circle. Number are interpreted as a number of degrees.

saturation <Percentage>

The saturation of the color.

lightness <Percentage>

The lightness of the color.

alphaoptional <Number | Percentage>

Alpha color component. Number between 0 and 1 or percentage.

￭ MDN documentation: color value: HSL colors

￭ More information: Colors (p. 68)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

404

https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/grayscale
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#HSL_colors

hsla()

Specifies a transparent color using hue, saturation, lightness and optionally alpha.

￭ Parameters

hsla(hue, saturation, lightness[, alpha]?)

hue <Number | Angle>

The hue of the color. Set using an angle of the color circle. Number are interpreted as a number of degrees.

saturation <Percentage>

The saturation of the color.

lightness <Percentage>

The lightness of the color.

alphaoptional <Percentage>

The alpha channel.

￭ MDN documentation: color value: HSL colors

￭ More information: Colors (p. 68)

hue-rotate()

Rotates the hue of the elements colors.

￭ Parameters

hue-rotate(angle)

angle <Angle>

The color shift as an angle.

hwb()

The hwb() functional notation expresses a color in the sRGB color space according to its hue, whiteness, and blackness.
An optional alpha component represents the color's transparency.

￭ Parameters

hwb([<number> | <angle> | none] [<percentage> | <number> | none] [<percentage> |
<number> | none] [/ [<alphavalue> | none]]?)

alphaoptional <<alphavalue>>

An <alphavalue> representing the alpha channel value of the color, where the number 0 corresponds to 0% (fully
transparent) and 1 corresponds to 100% (fully opaque). Additionally, the keyword none can be used to explicitly
specify no alpha channel. If the A channel value is not explicitly specified, it defaults to 100%. If included, the value
is preceded by a slash (/).

blackness <<percentage> | <number> | none>

A <percentage> or number representing the color's blackness or the keyword none (equivalent to 0% in this case)
to mix in. 0% represents no blackness. 100% represents full blackness if whiteness is 0, otherwise both the
whiteness and blackness values are normalized.

www.pdfreactor.com

E.9.2 Functions

405

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#HSL_colors

hue <<number> | <angle> | none>

A <number>, an <angle>, or the keyword none (equivalent to 0deg in this case) representing the color's <hue>
angle.

whiteness <<percentage> | <number> | none>

A <percentage> or number representing the color's whiteness or the keyword none (equivalent to 0% in this case)
to mix in. 0% represents no whiteness. 100% represents full whiteness if blackness is 0, otherwise both the
whiteness and blackness values are normalized.

￭ MDN documentation: hwb

inset()

Defines an inset rectangle.

￭ Parameters

inset(<shape-arg>{1,4} [round <border-radius>]?)

shape-arg <Length | Percentage>

Defines the top, right, bottom and left offsets from the reference box. These arguments follow the syntax of the
margin shorthand.

border-radiusoptional

Defines rounded corners for the inset rectangle, using the border-radius shorthand syntax. Negative values are
invalid.

￭ MDN documentation: basic-shape: inset()

invert()

Inverts the colors of the element.

￭ Parameters

invert(factor)

factor <Number | Percentage>

How strong the inversion should be. 50% makes the image gray, 100% completely inverts all colors.

￭ MDN documentation: invert

jpeg()

Indicates that an image should be embedded into the PDF, using a JPEG compression.

￭ Parameters

jpeg([quality]?)

qualityoptional <Number | Percentage>

Defines the quality of the compressed image. Either a number between 0 and 1 or a percentage value between 0%
and 100%. If omitted, the quality defaults to 80%.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

406

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value/hwb
https://developer.mozilla.org/en-US/docs/Web/CSS/basic-shape#inset()
https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/invert

lab()

The lab() functional notation expresses a given color in the CIE L*a*b* color space.
Lab represents the entire range of colors that humans can see by specifying the color's lightness, a red/green axis value,
a blue/yellow axis value, and an optional alpha transparency value.

￭ Parameters

lab([<percentage> | <number> | none] [<percentage> | <number> | none] [<percentage> |
<number> | none] [/ [<alphavalue> | none]]?)

a <<percentage> | <number> | none>

A <number> between -125 and 125, a <percentage> between -100% and 100%, or the keyword none (equivalent to
0% in this case). This value specifies the color's distance along the a axis, which defines how green (moving
towards -125) or red (moving towards +125) the color is. Note that these values are signed (allowing both positive
and negative values) and theoretically unbounded, meaning that you can set values outside the ±125 (±100%)
limits. In practice, values cannot exceed ±160.

alpha <<alphavalue>>

An <alphavalue> representing the alpha channel value of the color, where the number 0 corresponds to 0% (fully
transparent) and 1 corresponds to 100% (fully opaque). Additionally, the keyword none can be used to explicitly
specify no alpha channel. If the A channel value is not explicitly specified, it defaults to 100%. If included, the value
is preceded by a slash (/).

b <<percentage> | <number> | none>

A <number> between -125 and 125, a <percentage> between -100% and 100%, or the keyword none (equivalent to
0% in this case). This value specifies the color's distance along the b axis, which defines how blue (moving
towards -125) or yellow (moving towards +125) the color is. Note that these values are signed (allowing both
positive and negative values) and theoretically unbounded, meaning that you can set values outside the ±125
(±100%) limits. In practice, values cannot exceed ±160.

lightness <<percentage> | <number> | none>

A <number> between 0 and 100, a <percentage> between 0% and 100%, or the keyword none (equivalent to 0% in
this case). This value specifies the color's lightness. Here the number 0 corresponds to 0% (black) and the number
100 corresponds to 100% (white).

￭ MDN documentation: lab

lch()

The lch() functional notation expresses a given color using the LCH color space, which represents lightness, chroma, and
hue. It uses the same L axis as the lab() color function of the CIELab color space, but it uses the polar coordinates C
(Chroma) and H (Hue).

￭ Parameters

lch([<percentage> | <number> | none] [<percentage> | <number> | none] [<percentage> |
<number> | <angle> | none] [/ [<alphavalue> | none]]?)

alphaoptional <<alphavalue>>

An <alphavalue> representing the alpha channel value of the color, where the number 0 corresponds to 0% (fully
transparent) and 1 corresponds to 100% (fully opaque). Additionally, the keyword none can be used to explicitly
specify no alpha channel. If the alpha channel value is not explicitly specified, it defaults to 100%. If included, the
value is preceded by a slash (/).

www.pdfreactor.com

E.9.2 Functions

407

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value/lab

chroma <<percentage> | <number> | none>

A <number>, a <percentage>, or the keyword none (equivalent to 0% in this case). This value is a measure of the
color's chroma (roughly representing the "amount of color"). Its minimum useful value is 0%, or 0, while its
maximum is theoretically unbounded (but in practice does not exceed 230), with 100% being equivalent to 150.

hue <<percentage> | <number> | <angle> | none>

A <number>, an <angle>, or the keyword none (equivalent to 0deg) representing the color's <hue> angle.

lightness <<percentage> | <number> | none>

A <number> between 0 and 100, a <percentage> between 0% and 100%, or the keyword none (equivalent to 0%).
The number 0 corresponds to 0% (black), and the number 100 corresponds to 100% (white). This value specifies
the color's brightness in the CIELab color space.

￭ MDN documentation: lch

leader()

Creates a repeating pattern to connect content across horizontal spaces (for example the dots in a table of contents,
which connect the chapter names with the page numbers).
The function takes the pattern that should be repeated. Either one of the keywords dotted, solid, space or a custom
string.

￭ Parameters

leader([dotted | solid | space] | <string>)

￭ More information: Leaders (p. 152)

linear-gradient()

Creates a color gradient which for instance can be used as a background.

￭ Parameters

linear-gradient([[<angle> | to <side-or-corner>] ,]? <color-stop>[, <color-stop>]+)

angle

The angle of direction for the gradient.

side-or-corner

The direction of the gradient, using keywords. Syntax is [left | right] || [top | bottom].

color-stop

Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

￭ MDN documentation: linear-gradient

lossless()

Indicates that an image should be embedded into the PDF using lossless compression.

￭ Parameters

lossless()

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

408

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value/lch
https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient

matrix()

￭ Parameters

matrix()

￭ MDN documentation: matrix

minmax()

￭ Parameters

minmax([<fixed-breadth> , <track-breadth>] | [<inflexible-breadth> , <fixed-
breadth>] | [<inflexible-breadth> , <track-breadth>])

￭ MDN documentation: minmax

oklab()

The oklab() functional notation expresses a given color in the Oklab color space, which attempts to mimic how color is
perceived by the human eye.

￭ Parameters

oklab([<percentage> | <number> | none] [<percentage> | <number> | none] [<percentage> |
<number> | none] [/ [<alphavalue> | none]]?)

a <<percentage> | <number> | none>

A <number> between -0.4 and 0.4, a <percentage> between -100% and 100%, or the keyword none (equivalent to
0% in this case). This value specifies the color's distance along the a axis in the Oklab color space, which defines
how green (moving towards -0.4) or red (moving towards +0.4) the color is. Note that these values are signed
(allowing both positive and negative values) and theoretically unbounded, meaning that you can set values outside
the ±0.4 (±100%) limits. In practice, values cannot exceed ±0.5.

alphaoptional <<alphavalue>>

An <alphavalue> representing the alpha channel value of the color, where the number 0 corresponds to 0% (fully
transparent) and 1 corresponds to 100% (fully opaque). Additionally, the keyword none can be used to explicitly
specify no alpha channel. If the A channel value is not explicitly specified, it defaults to 100%. If included, the value
is preceded by a slash (/).

b <<percentage> | <number> | none>

A <number> between -0.4 and 0.4, a <percentage> between -100% and 100%, or the keyword none (equivalent to
0% in this case). This value specifies the color's distance along the b axis in the Oklab color space, which defines
how blue (moving towards -0.4) or yellow (moving towards +0.4) the color is. Note that these values are signed
(allowing both positive and negative values) and theoretically unbounded, meaning that you can set values outside
the ±0.4 (±100%) limits. In practice, values cannot exceed ±0.5.

lightness <<percentage> | <number> | none>

A <number> between 0 and 1, a <percentage> between 0% and 100%, or the keyword none (equivalent to 0% in
this case). This value specifies the color's perceived lightness. The number 0 corresponds to 0% (black) and the
number 1 corresponds to 100% (white).

￭ MDN documentation: oklab

www.pdfreactor.com

E.9.2 Functions

409

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/matrix
https://developer.mozilla.org/en-US/docs/Web/CSS/minmax
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value/oklab

oklch()

The oklch() functional notation expresses a given color in the Oklab color space. oklch() is the cylindrical form of oklab(),
using the same L axis, but with polar Chroma (C) and Hue (h) coordinates.

￭ Parameters

oklch([<percentage> | <number> | none] [<percentage> | <number> | none] [<percentage> |
<number> | <angle> | none] [/ [<alphavalue> | none]]?)

alphaoptional <<alphavalue>>

An <alphavalue> representing the alpha channel value of the color, where the number 0 corresponds to 0% (fully
transparent) and 1 corresponds to 100% (fully opaque). Additionally, the keyword none can be used to explicitly
specify no alpha channel. If the A channel value is not explicitly specified, it defaults to 100%. If included, the value
is preceded by a slash (/).

chroma <<percentage> | <number> | none>

A <number>, a <percentage>, or the keyword none (equivalent to 0% in this case). This value is a measure of the
color's chroma (roughly representing the "amount of color"). Its minimum useful value is 0, while the maximum is
theoretically unbounded (but in practice does not exceed 0.5). In this case, 0% is 0 and 100% is the number 0.4.

hue <<percentage> | <number> | <angle> | none>

A <number>, an <angle>, or the keyword none (equivalent to 0deg in this case) representing the color's <hue>
angle.

lightness <<percentage> | <number> | none>

A <number> between 0 and 1, a <percentage> between 0% and 100%, or the keyword none (equivalent to 0% in
this case). In this case, the number 0 corresponds to 0% (black) and the number 1 corresponds to 100% (white).
This value specifies the color's perceived lightness, or "brightness".

￭ MDN documentation: oklch

opacity()

Applies transparency to the element.

￭ Parameters

opacity(factor)

factor <Number | Percentage>

A value of 0% makes the element invisible.

￭ MDN documentation: opacity

polygon()

Defines a polygon.

￭ Parameters

polygon([<fill-rule>,]? [<shape-arg> <shape-arg>]#)

fill-ruleoptional <Identifier>

The filling rule used to determine the interior of the polygon. Possible values are nonzero and evenodd. Defaults to
nonzero if omitted.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

410

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value/oklch
https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/opacity

shape-arg <Length | Percentage>

Each pair defines a horizontal and vertical coordinate of a vertex of the polygon.

￭ MDN documentation: basic-shape: polygon()

radial-gradient()

Creates round color gradients which can be used as a background, for instance.

￭ Parameters

radial-gradient([[<shape> || <size>] [at <position>]?,
 | at <position>,]? <color-stop> [, <color-stop>]+)

position

Determines the center of the gradient. Uses the same syntax as the 'background-position' property. Default value
is 'center'

shape

Can be either 'circle' or 'ellipse'. Default is 'ellipse'.

size

Determines the size of the gradient. Values can be lengths and percentages (if the gradient is an ellipse, two
values define width and height) or keywords, which are 'closest-side', 'closest-corner', 'farthest-side' and 'farthest-
corner'.

color-stop

Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

￭ MDN documentation: radial-gradient

rect()

￭ Parameters

rect()

￭ MDN documentation: shape: rect()

repeat()

￭ Parameters

repeat([<integer> , [<line-names>? <track-size>]+ <line-names>?] | [[auto-fill |
auto-fit] , [<line-names>? <fixed-size>]+ <line-names>?] | [<integer> , [<line-
names>? <fixed-size>]+ <line-names>?])

￭ MDN documentation: repeat

www.pdfreactor.com

E.9.2 Functions

411

https://developer.mozilla.org/en-US/docs/Web/CSS/basic-shape#polygon()
https://developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient
https://developer.mozilla.org/en-US/docs/Web/CSS/shape#rect%28%29
https://developer.mozilla.org/en-US/docs/Web/CSS/repeat

repeating-linear-gradient()

Creates a color gradient which is repeated infinitely. It has the same syntax as linear-gradient.

￭ Parameters

repeating-linear-gradient([[<angle> | to <side-or-corner>] ,]?
 <color-stop> [, <color-stop>]+)

angle

The angle of direction for the gradient.

side-or-corner

The direction of the gradient, using keywords. Syntax is [left | right] || [top | bottom].

color-stop

Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

￭ MDN documentation: repeating-linear-gradient

repeating-radial-gradient()

Creates round color gradients which is repeated infinitely. Uses the same syntax as radial-gradient.

￭ Parameters

repeating-radial-gradient([[<shape> || <size>] [at <position>]#]? <color-stop> [,
<color-stop>]+)

position

Determines the center of the gradient. Uses the same syntax as the 'background-position' property. Default value
is 'center'

shape

Can be either 'circle' or 'ellipse'. Default is 'ellipse'.

size

Determines the size of the gradient. Values can be lengths and percentages (if the gradient is an ellipse, two
values define width and height) or keywords, which are 'closest-side', 'closest-corner', 'farthest-side' and 'farthest-
corner'.

color-stop

Defines the colors of the gradient. Syntax is "<color> [<percentage> | <length>]?".

rgb()

Defines an RGB color by specifying the red, green, and blue channels. The alpha channel can be specified optionally.

￭ Parameters

rgb(red, green, blue[, alpha]?)

red <Number | Percentage>

Red color component. Number between 0 and 255 or percentage.

green <Number | Percentage>

Green color component. Number between 0 and 255 or percentage.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

412

https://developer.mozilla.org/en-US/docs/Web/CSS/repeating-linear-gradient

blue <Number | Percentage>

Blue color component. Number between 0 and 255 or percentage.

alphaoptional <Number | Percentage>

Alpha color component. Number between 0 and 1 or percentage.

￭ MDN documentation: color value: RGB colors

￭ More information: Colors (p. 68)

rgba()

Defines an RGB color by specifying the red, green, and blue components and optionally the alpha channel.

￭ Parameters

rgba(red, green, blue[, alpha]?)

red <Number | Percentage>

Red color component. Number between 0 and 255 or percentage.

green <Number | Percentage>

Green color component. Number between 0 and 255 or percentage.

blue <Number | Percentage>

Blue color component. Number between 0 and 255 or percentage.

alphaoptional <Number | Percentage>

Alpha color component. Number between 0 and 1 or percentage.

￭ MDN documentation: color value: RGB colors

￭ More information: Colors (p. 68)

rotate()

￭ Parameters

rotate()

￭ MDN documentation: rotate

running()

Moves the element out of the normal flow and into a page margin box as a running header or footer. The page margin box
needs to specify the element function with the same <identifier> used for the running element to display it.

￭ Parameters

running(custom-ident)

custom-ident

Defines the name of the running element, which then is referenced by the element() function.

￭ More information: Running Elements (p. 125)

www.pdfreactor.com

E.9.2 Functions

413

https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#RGB_colors
https://developer.mozilla.org/en-US/docs/Web/CSS/color_value#RGB_colors
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/rotate

saturate()

Changes the saturation of the element.

￭ Parameters

saturate(factor)

factor <Number | Percentage>

A value of 0 completely desaturates the colors, 1 or 100% leaves them unchanged and greater values increase the
saturation.

￭ MDN documentation: saturate

scale()

￭ Parameters

scale()

￭ MDN documentation: scale

scaleX()

￭ Parameters

scaleX()

￭ MDN documentation: scaleX

scaleY()

￭ Parameters

scaleY()

￭ MDN documentation: scaleY

-ro-separation()
-ro-spot()

This function is used to make a printer use one specific print color (i.e. not a mixture of colors from multiple runs).
The functionality of the function -ro-spot is identical to this one.

￭ Parameters

-ro-separation([[<string> | <identifier>] <tint>?, <color>])

name <String>

The name of the pantone.

tintoptional <Number | Percentage>

The tint of the color. Number between 0 and 1 or percentage. Defaults to 1.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

414

https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/saturate
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scale
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scaleX
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/scaleY

alternative <Color>

A CMYK or RGB version of the color for the case that the pantone is unknown (e.g. the color on a screen).

￭ More information: Colors (p. 68)

sepia()

Convert the elements colors to sepia.

￭ Parameters

sepia(factor)

factor <Number | Percentage>

0 or 0% leaves the element's colors unchanged.

￭ MDN documentation: sepia

-ro-sidenote()

Declares an element to be a sidenote. The parameter defines the side on which it will be placed.

￭ Parameters

-ro-sidenote([<side> || closest]?)

sideoptional <Identifier>

One of the following values: left, right, start, end, inside, outside, recto or verso. Start and end are based on the
sidenote's container text direction. Inside and outside are based on whether the sidenote's page is left or right.
Recto and verso are based on the document's text direction, with recto being right in a left-to-right document. If
omitted, the side is resolved to 'recto'.

closestoptional <Identifier>

If the sidenote element originates in a multi-column element, it is moved to the left side for all left columns or to the
right for all right columns. If it is in the middle column, the side determined via the <side> argument. Has no effect
if the sidenote element is not inside a multi-column context. Note that this argument is separated with a space from
<side>, not a comma.

skew()

￭ Parameters

skew()

￭ MDN documentation: skew

skewX()

￭ Parameters

skewX()

￭ MDN documentation: skewX

www.pdfreactor.com

E.9.2 Functions

415

https://developer.mozilla.org/en-US/docs/Web/CSS/filter-function/sepia
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skew
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skewX

skewY()

￭ Parameters

skewY()

￭ MDN documentation: skewY

string()

Copies the value of a named string to the document, using the content property.

￭ Parameters

string(<custom-ident> [, [first | start | last | first-except]]?)

custom-ident

The name of the named string which is set via the property string-set.

first | start | last | first-exceptoptional

If there are multiple assignments on a page, this keyword specifies which one should be used.

￭ More information: Named Strings (p. 129)

target-counter()

Retrieves the value of the counter with the given name.

￭ Parameters

target-counter([<string> | <url>] , <custom-ident> [, <counter-style>]?)

url

The url of the target.

custom-ident

Name of the counter.

counter-styleoptional

Used to format the result, see the property 'list-style-type' for more information on the keywords.

￭ More information: Counters (p. 122), Cross-references (p. 130)

-ro-target-counter-offset()

Retrieves the value of the counter with the given name at the specified point and modifies the result by an offset.

￭ Parameters

-ro-target-counter-offset([<string> | <url>] , <custom-ident>, <integer> [, <counter-
style>]?)

url <String | URL>

The url of the target.

counter-name <Identifier>

Name of the counter.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

416

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/skewY

offset <Integer>

The offset by which the counter value is modified.

counter-styleoptional

Used to format the result, see the property 'list-style-type' for more information on the keywords. Default is
'decimal'.

target-counters()

Retrieves and formats the values of the counters of the given name by inserting the specified string between the value of
each nested counter.

￭ Parameters

target-counters([<string> | <url>] , <custom-ident> , <string> [, <counter-style>]?)

target-text()

Retrieves the text value of the element referred to by the URL.

￭ Parameters

target-text([<string> | <url>] [, [content | before | after | first-letter]]?)

url

The element whose content should be retrieved.

content | before | after | first-letteroptional

Specifies what content is retrieved, using the same values as the 'string-set' property.

￭ More information: Cross-references (p. 130)

translate()

￭ Parameters

translate()

￭ MDN documentation: translate

translateX()

￭ Parameters

translateX()

￭ MDN documentation: translateX

www.pdfreactor.com

E.9.2 Functions

417

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translate
https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translateX

translateY()

￭ Parameters

translateY()

￭ MDN documentation: translateY

url()

￭ Parameters

url()

￭ MDN documentation: url: The url() functional notation

var()

Used to insert the value of a CSS variable instead of any part of a value of another property.

￭ Parameters

var(<custom-property-name> [, <declaration-value>]?)

custom-property-name

The variable name

declaration-value

The fallback value, which is used in case the variable is invalid in the used context

xhtml()

A proprietary function that allows to reference a document which then is embedded.

￭ Parameters

xhtml(document)

document <String | URL>

An HTML document string or a URL pointing to an HTML document

￭ More information: Running Elements (p. 125)

E.9.3 Pseudo Classes

For @page rules

:blank

Matches pages without content that appear as a result of forced page breaks.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

418

https://developer.mozilla.org/en-US/docs/Web/CSS/transform-function/translateY
https://developer.mozilla.org/en-US/docs/Web/CSS/url#The_url%28%29_functional_notation

:first

The first page of the document.

￭ More information: Page Selectors (p. 114)

:-ro-last

The last page of the document.

￭ More information: Last Page (p. 115)

:left

A left page of the document.

￭ MDN documentation: :left

￭ More information: Page Selectors (p. 114)

:-ro-nth(An+B | even | odd)

This pseudo class matches a page with a page number that matches the given equation.

￭ Parameters

:-ro-nth(An+B | even | odd)

An+B | even | odd

Describes on which page numbers this selector should match. A and B are integers, while n is the non-negative
variable (counting from 1 to the total number of pages). The selector matches if the number of previous pages is a
solution of the expression.

￭ More information: Nth Page (p. 115), Page Groups (p. 116)

:recto

Same as 'right', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in
which case it is the same as 'left'.

￭ More information: Page Selectors (p. 114)

:right

A right page of the document.

￭ MDN documentation: :right

￭ More information: Page Selectors (p. 114)

www.pdfreactor.com

E.9.3 Pseudo Classes

419

https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aleft
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aright

:verso

Same as 'left', unless the document direction is right-to-left, i.e. the root or body element has a 'direction' value of 'rtl', in
which case it is the same as 'right'.

￭ More information: Page Selectors (p. 114)

For elements

:checked

A checked checkbox or radio button.

￭ MDN documentation: :checked

:disabled

A disabled form field.

￭ MDN documentation: :disabled

:empty

An element without children (including text nodes)

￭ MDN documentation: :empty

:enabled

An enabled form field.

￭ MDN documentation: :enabled

:first-child

An element, first child of its parent

￭ MDN documentation: :first-child

:first-of-type

An element, first sibling of its type.

￭ MDN documentation: :first-of-type

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

420

https://developer.mozilla.org/en-US/docs/Web/CSS/%3Achecked
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Adisabled
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aempty
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aenabled
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Afirst-child
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Afirst-of-type

:is(s)

An element that matches the specified selector.
The specificity of this pseudo class is the highest specificity of its list of selectors.

￭ Parameters

:is(s)

s

A single or a list of selectors.

￭ MDN documentation: :is

:lang(languagecode)

Selects every element with a lang attribute value starting with the languagecode specified as parameter

￭ Parameters

:lang(languagecode)

languagecode <String>

The language code to match, e.g. "de", "en", "it", etc.

￭ MDN documentation: :lang

:last-child

An element, last child of its parent

￭ MDN documentation: :last-child

:last-of-type

An element, last sibling of its type.

￭ MDN documentation: :last-of-type

:link

Selects all unvisited links.

￭ MDN documentation: :link

:-ro-matches(s)

An element that matches selector s.
For the standard compliant version of this pseudo-class see :is.

￭ Parameters

:-ro-matches(s)

www.pdfreactor.com

E.9.3 Pseudo Classes

421

https://developer.mozilla.org/en-US/docs/Web/CSS/%3Ais
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Alang
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Alast-child
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Alast-of-type
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Alink

s <String>

The selector to match.

:-ro-no-content

Matches on an element without textual content, with certain character like whitespaces being ignored. Textual content is
any character that does not match to the following Unicode Character Categories: Control (Cc), Format (Cf), Line
Separator (Zl), Paragraph Separator (Zp), Space Separator (Zs).

:not(s)

An element that does not match selector s.

￭ Parameters

:not(s)

s <String>

The single selector or selector list to match.

￭ MDN documentation: :not

:nth-child(An+B | even | odd)

An element, nth child of its parent.
The selector matches, if the element's index (with 1 being the index of the first child) is a solution of the equation a*n + b,
with a and b being integers and n being a non-negative variable integer.
The keyword even is the same as "2n" and odd is the same as "2n+1".

￭ Parameters

:nth-child(An+B | even | odd)

An+B | even | odd

￭ MDN documentation: :nth-child

:nth-last-child(An+B | even | odd)

An element, nth last child of its parent.
The selector matches, if the element's index counting from its parent's last child (with 1 being the index of the last child) is
a solution of the equation a*n + b, with a and b being integers and n being a non-negative variable integer.
The keyword even is the same as "2n" and odd is the same as "2n+1".

￭ Parameters

:nth-last-child(An+B | even | odd)

An+B | even | odd

￭ MDN documentation: :nth-last-child

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

422

https://developer.mozilla.org/en-US/docs/Web/CSS/%3Anot
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Anth-child
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Anth-last-child

:nth-last-of-type(An+B | even | odd)

An element, nth last sibling of its type.
The element's siblings of the same type are counted, beginning with the last one. If the found number is a solution of the
equation a*n + b, with a and b being integers and n being a non-negative variable integer, the selector matches.
The keyword even is the same as "2n" and odd is the same as "2n+1".

￭ Parameters

:nth-last-of-type(An+B | even | odd)

An+B | even | odd

￭ MDN documentation: :nth-last-of-type

:nth-of-type(An+B | even | odd)

An element, nth sibling of its type.
The element's siblings of the same type are counted. If the found number is a solution of the equation a*n + b, with a and
b being integers and n being a non-negative variable integer, the selector matches.
The keyword even is the same as "2n" and odd is the same as "2n+1".

￭ Parameters

:nth-of-type(An+B | even | odd)

An+B | even | odd

￭ MDN documentation: :nth-of-type

:only-child

Selects every element that is the only child of its parent.

￭ MDN documentation: :only-child

:only-of-type

An element, only sibling of its type.

￭ MDN documentation: :only-of-type

:root

Selects the document's root element.

￭ MDN documentation: :root

www.pdfreactor.com

E.9.3 Pseudo Classes

423

https://developer.mozilla.org/en-US/docs/Web/CSS/%3Anth-last-of-type
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Anth-of-type
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aonly-child
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aonly-of-type
https://developer.mozilla.org/en-US/docs/Web/CSS/%3Aroot

:where(s)

An element that matches the specified selector. Similar to :is, but the specificity of this pseudo class is always zero.

￭ Parameters

:where(s)

s

A single or a list of selectors.

￭ MDN documentation: :where

E.9.4 Pseudo Elements

::after

Generated content after an element.

￭ MDN documentation: ::after

::-ro-after-break

Creates generated content at the top of a fragment after a break.

￭ More information: Continuation Markers (p. 138)

::before

Generated content before an element.

￭ MDN documentation: ::before

::-ro-before-break

Creates generated content at the bottom of a fragment before a break.

￭ More information: Continuation Markers (p. 138)

::first-letter

Selects the first letter of each element.

￭ MDN documentation: ::first-letter

::-ro-footnote-area

Specified on a multi-column container or a region flow box, this pseudo-element allows to set styles on the respective
footnote area.

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

424

https://developer.mozilla.org/en-US/docs/Web/CSS/%3Awhere
https://developer.mozilla.org/en-US/docs/Web/CSS/%3A%3Aafter
https://developer.mozilla.org/en-US/docs/Web/CSS/%3A%3Abefore
https://developer.mozilla.org/en-US/docs/Web/CSS/%3A%3Afirst-letter

::footnote-call

Generated content replacing elements that are moved to the footnote area.

::footnote-marker

Generated content preceding footnotes.

::-ro-sidenote-call

Generated content replacing elements that are moved to a sidenote area.

::-ro-sidenote-marker

Generated content preceding sidenotes.

E.9.5 At-Rules

@charset

The character encoding that is used. The at-rule @charset does not work for a style sheet that is imported via @import.

￭ Syntax

@charset <string>;

￭ MDN documentation: @charset

@counter-style

A custom counter-style.

￭ Syntax

@counter-style <identifier> { ... }

￭ MDN documentation: @counter-style

￭ More information: Counters (p. 122)

@font-face

A custom font.

￭ Syntax

@font-face { ... }

￭ MDN documentation: @font-face

￭ More information: CSS Defined Fonts (p. 197)

www.pdfreactor.com

E.9.5 At-Rules

425

https://developer.mozilla.org/en-US/docs/Web/CSS/%40charset
https://developer.mozilla.org/en-US/docs/Web/CSS/%40counter-style
https://developer.mozilla.org/en-US/docs/Web/CSS/%40font-face

@footnote

Allows to style the page's footnote area. It is used inside a page-rule.

￭ Syntax

@footnote {...}

￭ More information: Footnotes (p. 132)

@import

Imports another style sheet into this one.

￭ Syntax

@import <url> <media-type>#?;

￭ MDN documentation: @import

@media

Allows making parts of the style sheet conditionally on the media type (e.g.: "print" or "screen") or media condition (e.g:
"width" or "scripting"). This is useful when documents are intended for both PDFreactor and browsers.

￭ Syntax

@media <media-condition> || [[only | not]? <media-type>? [and <media-condition>]?]

￭ MDN documentation: @media

￭ More information: Media Queries (p. 163)

@namespace

Declares an XML namespace, usually with a prefix.

￭ Syntax

@namespace <identifier> <url>

￭ MDN documentation: @namespace

@page

Selector for specific pages.

￭ Syntax

@page <identifier>? [:first | :blank | :left | :right | :recto | :verso | :-ro-last | :-
ro-nth(An+B [of name]?)]? { ... }

￭ MDN documentation: @page

￭ More information: Page Selectors (p. 114)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

426

https://developer.mozilla.org/en-US/docs/Web/CSS/%40import
https://developer.mozilla.org/en-US/docs/Web/CSS/%40media
https://developer.mozilla.org/en-US/docs/Web/CSS/%40namespace
https://developer.mozilla.org/en-US/docs/Web/CSS/%40page

@-ro-preferences

Sets document specific preferences. It overwrites settings specified via the PDFreactor API.

￭ Syntax

@-ro-preferences {...}

￭ More information: Document-Specific Preferences (p. 168)

@-ro-sidenote

Selects up to two sidenote areas, depending on the appended pseudo-class. If no pseudo-class is specified, both
sidenote areas are selected.

￭ Syntax

@-ro-sidenote [:left | :right | :verso | :recto | :inside | :outside]?

￭ More information: Sidenotes (p. 134), The Sidenote Area (p. 136)

@supports

Allows making parts of the style sheet conditionally on whether certain CSS properties or values are supported. This is
useful when documents are intended for both PDFreactor and browsers and functionality is used that is not supported in
all of them.

￭ Syntax

@supports <supports-condition> { ... }

￭ MDN documentation: @supports

www.pdfreactor.com

E.9.5 At-Rules

427

https://developer.mozilla.org/en-US/docs/Web/CSS/%40supports

@top-left
@top-center
@top-right
@top-right-corner
@right-top
@right-middle
@right-bottom
@right-bottom-corner
@bottom-right
@bottom-center
@bottom-left
@bottom-left-corner
@left-bottom
@left-middle
@left-top
@top-left-corner

These rules allow generating content in the page margins.

￭ Syntax

@top-left { ... }

￭ More information: Page Header & Footer (p. 124)

E.9.6 Types

<absolute-size>

A set of absolute font sizes: xx-small: 9px, x-small: 10px, small: 13px, medium: 16px, large: 18px, x-large: 24px, xx-large:
32px

￭ Syntax

xx-small | x-small | small | medium | large | x-large | xx-large

<pdf-standard-structure-type>

The set of standard types for PDF tagging.
It is highly recommended to only use these types (as other ones can be specified as case-sensitive strings, but will likely
break conformances like PDF/UA or PDF/A) or kinds (see <pdf-tag-kind> below).

￭ Syntax

part | art | sect | div | blockquote | caption | toc | toci | index | nonstruct |
private | h | h1 | h2 | h3 | h4 | h5 | h6 | p | l | li | lbl | lbody | table | tr | th |
td | thead | tbody | tfoot | span | quote | note | reference | bibentry | code | link |
annot | ruby | rb | rt | rp | warichu | wt | wp | figure | formula | form

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX E: CSS Support

428

<pdf-tag-kind>

The set of keywords to describe groups of PDF tagging types that can be addressed or inserted semi-automatically.

￭ Syntax

simple | simple-block | simple-block-strict | simple-inline | table-struct | list-struct

<pdf-tag-type>

The set of keywords to describe PDF tagging types as well as the alternatives "none" (no tag for the element, but normal
ones for its subtree and content) and "artifact" (no tags for the element and its entire subtree or content).

￭ Syntax

<pdf-standard-structure-type> | <pdf-tag-kind> | artifact | none | <string>

<relative-size>

A set of font-sizes that are relative to the parent font-size: 'smaller' means the parent font-size divided by 1.2., while
'larger' results in 1.2 times the parent font-size.

￭ Syntax

larger | smaller

www.pdfreactor.com

E.9.6 Types

429

APPENDIX F: JAVASCRIPT
SUPPORT
The following table lists the JavaScript libraries and frameworks tested with PDFreactor. These tests were
done using GraalJS as JavaScript engine. Please refer to the JavaScript chapter (p. 82) for more information.
Other libraries and frameworks or other minor versions of the listed ones may still be functional, they are
merely untested. Frameworks with only a check mark passed all of our internal tests, while the others are
subject to known limitations. Please refer to the respective column for further details.

Library Successfully
tested
Versions

Support Known Limitations

amCharts 5.10.5,
3.21.15

Angular 18.2.5,
17.3.12,
16.2.12

Angular.js 1.8.3

bignumber.js 9.1.2

Bootstrap 5.3.3 Toogle buttons are overlayed with a checkmark, to remove them, add the
following style:

*.form-check-input[type="checkbox"] { color: transparent; }

Chart.js 2.9.4 When an array with colors is passed instead of a string where only one
color is expected, this may cause a fallback to gray. In most cases,
browsers use the first value instead.

Flotr2 0.1.0

Handlebars 4.7.8

Highcharts 11.4.8 Pictorial graphs do not work.

 When a legend has enabled shadows, only it's content is rendered
and the box behind it is missing.

Highcharts 10.3.3

Continued

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX F: JavaScript Support

430

Library Successfully
tested
Versions

Support Known Limitations

jQuery 3.7.1

JSZip 3.10.1

Leaflet 1.9.4

Less 4.2.0,
3.13.1,
2.7.3

Lodash 4.17.21

MathJax 2.7.9 SVG output preferred, see MathML (p. 73).

 There are known issues when using the combined configurations
provided by the CDN. They should be added manually instead.

Modernizr 3.13.1

MooTools 1.6.0

Plotly.js 2.35.2 Shadows applied on text are not rendered, which may result in labels
being hard to read.

Prototype 1.7.3

Raphaël 2.3.0

React 18.3.1,
17.0.2

RequireJS 2.3.6

Underscore.js 1.13.7

Vue.js 2.7.16

Continued

www.pdfreactor.com

APPENDIX F: JavaScript Support

431

https://docs.mathjax.org/en/v2.7-latest/config-files.html

APPENDIX G: CODE SAMPLES FOR
OTHER LANGUAGES

G.1 Creating a PDFreactor instance
Back to main chapter (p. 10)

G.2 Configuration properties
Back to main chapter (p. 10)

PDFreactor pdfReactor = new PDFreactor();

See Using Java (p. 29) for a more extensive sample.

Java

PDFreactor pdfReactor = new PDFreactor();

See Using .NET (p. 27) for a more extensive sample.

C#

const pdfReactor = new PDFreactor();

See Using JavaScript/Node.js (p. 30) for a more extensive sample.

JavaScript

const pdfReactor = new PDFreactor();

See Using JavaScript/Node.js (p. 30) for a more extensive sample.

Node.js

$pdfReactor = new PDFreactor();

See Using PHP (p. 26) for a more extensive sample.

PHP

pdfReactor = PDFreactor()

See Using Python (p. 28) for a more extensive sample.

Python

pdfReactor = PDFreactor.new()

See Using Ruby (p. 29) for a more extensive sample.

Ruby

Does not apply. REST

Configuration config = new Configuration(); Java

Configuration config = new Configuration(); C#

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

432

G.3 Source document use case: local document
Back to main chapter (p. 12)

const config = {}; JavaScript

const config = {}; Node.js

$config = []; PHP

config = {} Python

config = {} Ruby

A JSON object REST

config.setDocument("file:///local-folder/document.html"); // Linux/Mac
config.setDocument("file:///c:/local-folder/document.html"); // Windows

Java

config.Document = "file:///local-folder/document.html"; // Linux/Mac
config.Document = "file:///c:/local-folder/document.html"; // Windows

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

C#

config.document = "file:///local-folder/document.html"; // Linux/Mac
config.document = "file:///c:/local-folder/document.html"; // Windows

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

JavaScript

config.document = "file:///local-folder/document.html"; // Linux/Mac
config.document = "file:///c:/local-folder/document.html"; // Windows

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

Node.js

$config["document"] = "file:///local-folder/document.html"; // Linux/Mac
$config["document"] = "file:///c:/local-folder/document.html"; // Windows

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

PHP

config['document'] = "file:///local-folder/document.html" # Linux/Mac
config['document'] = "file:///c:/local-folder/document.html" # Windows

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

Python

config['document'] = "file:///local-folder/document.html" # Linux/Mac
config['document'] = "file:///c:/local-folder/document.html" # Windows

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

Ruby

Linux/Mac:

{ "document": "file:///local-folder/document.html" }

REST

www.pdfreactor.com

G.3 Source document use case: local document

433

G.4 Source document use case: remote document
Back to main chapter (p. 12)

G.5 Source document use case: rendered template
Back to main chapter (p. 12)

Windows:

{ "document": "file:///c:/local-folder/document.html" }

Important: The PDFreactor Web Service might not allow access to its file system. See Security (p. 51).

config.setDocument("https://some-server.com/document.html"); Java

config.Document = "https://some-server.com/document.html"; C#

config.document = "https://some-server.com/document.html"; JavaScript

config.document = "https://some-server.com/document.html"; Node.js

$config["document"] = "https://some-server.com/document.html"; PHP

config['document'] = "https://some-server.com/document.html" Python

config['document'] = "https://some-server.com/document.html" Ruby

{ "document": "https://some-server.com/document.html" } REST

String renderedTemplate = renderMyTemplate();
config.setDocument(renderedTemplate);

Java

String renderedTemplate = RenderMyTemplate();
config.Document = renderedTemplate;

C#

const renderedTemplate = renderMyTemplate();
config.document = renderedTemplate

JavaScript

const renderedTemplate = renderMyTemplate();
config.document = renderedTemplate

Node.js

$renderedTemplate = $renderMyTemplate();
$config["document"] = $renderedTemplate;

PHP

renderedTemplate = renderMyTemplate()
config['document'] = renderedTemplate

Python

renderedTemplate = renderMyTemplate()
config['document'] = renderedTemplate

Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

434

G.6 Retrieving the converted document from a result object
Back to main chapter (p. 13)

G.7 Starting an synchronous conversion
Back to main chapter (p. 16)

{ "document": "<html><body><p>My rendered template</p></body></html>" } REST

byte[] pdfOrImage = result.getDocument();
byte[][] imagePages = result.getDocumentArray();

Java

byte[] pdfOrImage = result.Document;
byte[][] imagePages = result.DocumentArray;

C#

const pdfOrImage = result.document;
const imagePages = result.documentArray;

JavaScript

const pdfOrImage = result.document;
const imagePages = result.documentArray;

Node.js

$pdfOrImage = $result->document;
$imagePages = $result->documentArray;

PHP

pdfOrImage = result['document'];
imagePages = result['documentArray'];

Python

pdfOrImage = result["document"]
imagePages = result["documentArray"]

Ruby

The following describes the JSONPath notation of the document or document array in the result object:

$.document
$.documentArray

REST

Result result = pdfReactor.convert(config); Java

Result result = pdfReactor.Convert(config); C#

const result = await pdfReactor.convert(config); JavaScript

const result = await pdfReactor.convert(config); Node.js

$result = $pdfReactor->convert($config); PHP

result = pdfReactor.convert(config); Python

result = pdfReactor.convert(config); Ruby

www.pdfreactor.com

G.6 Retrieving the converted document from a result object

435

G.8 Starting an asynchronous conversion
Back to main chapter (p. 17)

G.9 Checking the progress
Back to main chapter (p. 17)

To convert synchronously, POST your configuration to /convert REST

// sync
Result result = pdfReactor.convert(config);
// async
String id = pdfReactor.convertAsync(config);

Java

// sync
Result result = pdfReactor.Convert(config);
// async
String id = pdfReactor.ConvertAsync(config);

C#

// sync
const result = await pdfReactor.convert(config);
// async
const id = await pdfReactor.convertAsync(config);

JavaScript

// sync
const result = await pdfReactor.convert(config);
// async
const id = await pdfReactor.convertAsync(config);

Node.js

// sync
$result = $pdfReactor->convert($config);
// async
$id = $pdfReactor->convertAsync($config);

PHP

sync
result = pdfReactor.convert(config);
async
id = pdfReactor.convertAsync(config);

Python

sync
result = pdfReactor.convert(config);
async
id = pdfReactor.convertAsync(config);

Ruby

To convert synchronously, POST your configuration to /convert

To convert asynchronously, POST your configuration to /convert/async

REST

Progress progress = pdfReactor.getProgress(id); Java

Progress progress = pdfReactor.GetProgress(id); C#

const progress = await pdfReactor.getProgress(id); JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

436

G.10 Retrieving the document
Back to main chapter (p. 17)

G.11 Keeping the document
Back to main chapter (p. 18)

const progress = await pdfReactor.getProgress(id); Node.js

$progress = $pdfReactor->getProgress($id); PHP

progress = pdfReactor.getProgress(id) Python

progress = pdfReactor.getProgress(id) Ruby

Make a GET request to /progress/{id} REST

Result result = pdfReactor.getDocument(id); Java

Result result = pdfReactor.GetDocument(id); C#

const result = await pdfReactor.getDocument(id); JavaScript

const result = await pdfReactor.getDocument(id); Node.js

$result = $pdfReactor->getDocument($id); PHP

result = pdfReactor.getDocument(id) Python

result = pdfReactor.getDocument(id) Ruby

Make a GET request to /document/{id} REST

config.setKeepDocument(true); Java

config.keepDocument = true; C#

config.keepDocument = true; JavaScript

config.keepDocument = true; Node.js

$config["keepDocument"] = true; PHP

config['keepDocument'] = True Python

config['keepDocument'] = true Ruby

www.pdfreactor.com

G.10 Retrieving the document

437

G.12 Deleting the document
Back to main chapter (p. 18)

G.13 Streaming conversion
Back to main chapter (p. 18)

{ "keepDocument": "true" } REST

pdfReactor.deleteDocument(id); Java

pdfReactor.DeleteDocument(id); C#

pdfReactor.deleteDocument(id); JavaScript

pdfReactor.deleteDocument(id); Node.js

$pdfReactor->deleteDocument($id); PHP

pdfReactor.deleteDocument(id) Python

pdfReactor.deleteDocument(id) Ruby

Make a DELETE request to /document/{id} REST

// sync
pdfReactor.convert(config, outputStream);
// async
pdfReactor.getDocument(id, outputStream);

Java

// sync
pdfReactor.Convert(config, stream);
// async
pdfReactor.ConvertAsync(config, stream);

C#

Not possible. JavaScript

// sync
await pdfReactor.convert(config, stream);
// async
await pdfReactor.convertAsync(config, stream);

Node.js

// sync
$pdfReactor->convert($config, $resource);
// async
$pdfReactor->convertAsync($config, $resource);

PHP

sync
result = pdfReactor.convert(config, fileOrStream);
async
pdfReactor.convertAsync(config, fileOrStream);

Python

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

438

G.14 Retrieving the document's metadata
Back to main chapter (p. 18)

G.15 Setting custom headers and cookies
Back to main chapter (p. 32)

sync
pdfReactor.convert(config, fileOrStream);
async
pdfReactor.convertAsync(config, fileOrStream);

Ruby

The REST API automatically streams when specifying a binary data type for the Accept header. REST

Result result = pdfReactor.getDocumentMetadata(id); Java

Result result = pdfReactor.GetDocumentMetadata(id); C#

const result = await pdfReactor.getDocumentMetadata(id); JavaScript

const result = await pdfReactor.getDocumentMetadata(id); Node.js

$result = $pdfReactor->getDocumentMetadata($id); PHP

result = pdfReactor.getDocumentMetadata(id) Python

result = pdfReactor.getDocumentMetadata(id) Ruby

Make a GET request to /document/metadata/{id} REST

ConnectionSettings connectionSettings = new ConnectionSettings();
connectionSettings.setHeaders(new HashMap<>());
connectionSettings.setCookies(new HashMap<>());
connectionSettings.getHeaders().put("my-header", "my-header-value");
connectionSettings.getCookies().put("my-cookie", "my-cookie-value");
pdfReactor.convert(config, connectionSettings);

Java

ConnectionSettings connectionSettings = new ConnectionSettings()
{
 Headers = new NameValueCollection(),
 Cookies = new NameValueCollection()
};
connectionSettings.Headers.Set("my-header", "my-header-value");
connectionSettings.Cookies.Set("my-cookie", "my-cookie-value");
pdfReactor.Convert(config, connectionSettings);

C#

const connectionSettings = {
 headers: { 'my-header': 'my-header-value' }
}
pdfReactor.convert(config, connectionSettings);

Note: Setting cookies manually is not possible in JavaScript. It is done automatically by the browser.

JavaScript

www.pdfreactor.com

G.14 Retrieving the document's metadata

439

G.16 Setting the service URL
Back to main chapter (p. 33)

const connectionSettings = {
 headers: { 'my-header': 'my-header-value' },
 cookies: { 'my-cookie': 'my-cookie-value'}
}
pdfReactor.convert(config, connectionSettings);

Node.js

$connectionSettings = array(
 "headers" => array("my-header" => "my-header-value"),
 "cookies" => array("my-cookie" => "my-cookie-value")
)
$pdfReactor->convert($config, $connectionSettings);

PHP

connectionSettings = {
 "headers": { "my-header": "my-header-value" },
 "cookies": { "my-cookie": "my-cookie-value" }
}
pdfReactor.convert(config, connectionSettings)

Python

connectionSettings = {
 headers: { "my-header" => "my-header-value" },
 cookies: { "my-cookie" => "my-cookie-value" }
}
pdfReactor.convert(config, connectionSettings)

Note: Make sure to use symbols as property names and strings as header and cookie names and values.

Ruby

Refer to the documentation of your HTTP client on how to set cookies and headers. REST

PDFreactor pdfReactor = new PDFreactor("http://myServer:9423/service/rest"); Java

PDFreactor pdfReactor = new PDFreactor("http://myServer:9423/service/rest"); C#

pdfReactor = new PDFreactor("http://myServer:9423/service/rest"); JavaScript

pdfReactor = new PDFreactor("http://myServer:9423/service/rest"); Node.js

$pdfReactor = new PDFreactor("http://myServer:9423/service/rest"); PHP

pdfReactor = PDFreactor("http://myServer:9423/service/rest") Python

pdfReactor = PDFreactor.new("http://myServer:9423/service/rest") Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

440

G.17 Setting load balancer sticky cookie
Back to main chapter (p. 35)

ConnectionSettings connectionSettings = new ConnectionSettings();
connectionSettings.setCookies(new HashMap<>());
connectionSettings.getCookies().put("sticky-cookie", "sticky-cookie-value");
String documentId = pdfReactor.convertAsync(config, connectionSettings);
// ...
pdfReactor.getDocument(documentId, connectionSettings);

Java

ConnectionSettings connectionSettings = new ConnectionSettings()
{
 Cookies = new NameValueCollection()
};
connectionSettings.Cookies.Set("sticky-cookie", "sticky-cookie-value");
string documentId = pdfReactor.ConvertAsync(config, connectionSettings);
// ...
pdfReactor.GetDocument(documentId, connectionSettings);

C#

Note: Setting cookies manually is not possible in JavaScript. It is done automatically by the browser. JavaScript

const connectionSettings = {
 cookies: { 'sticky-cookie': 'sticky-cookie-value'}
}
const documentId = pdfReactor.convertAsync(config, connectionSettings);
// ...
pdfReactor.getDocument(documentId, connectionSettings);

Node.js

$connectionSettings = array(
 "cookies" => array("sticky-cookie" => "sticky-cookie-value")
)
$documentId = $pdfReactor->convertAsync($config, $connectionSettings);
// ...
$pdfReactor->getDocument($documentId, $connectionSettings);

PHP

connectionSettings = {
 "cookies": { "sticky-cookie": "sticky-cookie-value" }
}
documentId = pdfReactor.convertAsync(config, connectionSettings)
...
pdfReactor.getDocument(documentId, connectionSettings)

Python

connectionSettings = {
 cookies: { "sticky-cookie" => "sticky-cookie-value" }
}
documentId = pdfReactor.convertAsync(config, connectionSettings)
...
pdfReactor.getDocument(documentId, connectionSettings)

Note: Make sure to use symbols as property names and strings as header and cookie names and values.

Ruby

Refer to the documentation of your HTTP client on how to set cookies and headers. REST

www.pdfreactor.com

G.17 Setting load balancer sticky cookie

441

G.18 Adding a ping
Back to main chapter (p. 37)

config.setCallbacks(new Callback()
 .setUrl("http://myServer/myEndpoint1")
 .setType(CallbackType.FINISH)
 .setContentType(ContentType.TEXT));

Java

config.Callbacks = new List<Callback>
{
 new Callback
 {
 Url = "http://myServer/myEndpoint1",
 Type = CallbackType.FINISH,
 ContentType = ContentType.TEXT
 }
};

C#

config.callbacks = [{
 url: "http://myServer/myEndpoint1",
 type: PDFreactor.CallbackType.FINISH,
 contentType: PDFreactor.ContentType.TEXT
}];

JavaScript

config.callbacks = [{
 url: "http://myServer/myEndpoint1",
 type: PDFreactor.CallbackType.FINISH,
 contentType: PDFreactor.ContentType.TEXT
}];

Node.js

$config["callbacks"] = array(
 array(
 "url" => "http://myServer/myEndpoint1",
 "type" => CallbackType::FINISH,
 "contentType" => ContentType::TEXT
)
);

PHP

config['callbacks'] = [{
 'url': 'http://myServer/myEndpoint1',
 'type': PDFreactor.CallbackType.FINISH,
 'contentType': PDFreactor.ContentType.TEXT
}]

Python

config['callbacks'] = [{
 url: 'http://myServer/myEndpoint1',
 type: PDFreactor::CallbackType::FINISH,
 contentType: PDFreactor::ContentType::TEXT
}]

Ruby

{ "callbacks": [{
 "url": "http://myServer/myEndpoint1",
 "type": "FINISH",
 "contentType": "TEXT"
}]}

REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

442

G.19 Adding a progress notifier
Back to main chapter (p. 37)

config.setCallbacks(new Callback()
 .setUrl("http://myServer/myEndpoint2")
 .setType(CallbackType.PROGRESS)
 .setContentType(ContentType.JSON)
 .setInterval(2));

Java

config.Callbacks = new List<Callback>
{
 new Callback
 {
 Url = "http://myServer/myEndpoint2",
 Type = CallbackType.PROGRESS,
 ContentType = ContentType.JSON,
 Interval = 2
 }
};

C#

config.callbacks = [{
 url: "http://myServer/myEndpoint2",
 type: PDFreactor.CallbackType.PROGRESS,
 contentType: PDFreactor.ContentType.JSON,
 interval: 2
}];

JavaScript

config.callbacks = [{
 url: "http://myServer/myEndpoint2",
 type: PDFreactor.CallbackType.PROGRESS,
 contentType: PDFreactor.ContentType.JSON,
 interval: 2
}];

Node.js

$config["callbacks"] = array(
 array(
 "url" => "http://myServer/myEndpoint2",
 "type" => CallbackType::PROGRESS,
 "contentType" => ContentType::JSON,
 "interval" => 2
)
);

PHP

config['callbacks'] = [{
 'url': 'http://myServer/myEndpoint2',
 'type': PDFreactor.CallbackType.PROGRESS,
 'contentType': PDFreactor.ContentType.JSON,
 'interval': 2
}]

Python

config['callbacks'] = [{
 url: 'http://myServer/myEndpoint2',
 type: PDFreactor::CallbackType::PROGRESS,
 contentType: PDFreactor::ContentType::JSON,
 interval: 2
}]

Ruby

www.pdfreactor.com

G.19 Adding a progress notifier

443

G.20 Checking the health using a client
Back to main chapter (p. 38)

G.21 Setting the log level
Back to main chapter (p. 41)

{ "callbacks": [{
 "url": "http://myServer/myEndpoint2",
 "type": "PROGRESS",
 "contentType": "JSON",
 "interval": 2
}]}

REST

pdfReactor.getStatus(connectionSettings); Java

pdfReactor.GetStatus(connectionSettings); C#

pdfReactor.getStatus(connectionSettings); JavaScript

pdfReactor.getStatus(connectionSettings); Node.js

$pdfReactor->getStatus($connectionSettings); PHP

pdfReactor.getStatus(connectionSettings) Python

pdfReactor.getStatus(connectionSettings) Ruby

Make a GET request to the /status RESTful resource REST

config.setLogLevel(LogLevel.WARN); Java

config.LogLevel = LogLevel.WARN; C#

config.logLevel = PDFreactor.LogLevel.WARN; JavaScript

config.logLevel = PDFreactor.LogLevel.WARN; Node.js

$config["logLevel"] = LogLevel::WARN; PHP

config['logLevel'] = PDFreactor.LogLevel.WARN Python

config['logLevel'] = PDFreactor::LogLevel::WARN Ruby

{ "logLevel": "WARN" } REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

444

G.22 Retrieving the logs of a conversion
Back to main chapter (p. 41)

Log log = result.getLog();
if (log != null) {
 Record[] mainLog = log.getRecords();
 Record[] cssLog = log.getRecordsCss();
 Record[] jsLog = log.getRecordsJavaScript();
}

Java

Log log = result.Log;
if (log != null)
{
 Record[] mainLog = log.Records;
 Record[] cssLog = log.RecordsCss;
 Record[] jsLog = log.RecordsJavaScript;
}

C#

const log = result.log;
if (log) {
 const mainLog = log.records;
 const cssLog = log.recordsCss;
 const jsLog = log.recordsJavaScript;
}

JavaScript

const log = result.log;
if (log) {
 const mainLog = log.records;
 const cssLog = log.recordsCss;
 const jsLog = log.recordsJavaScript;
}

Node.js

$log = $result->log;
if (!$log) {
 $mainLog = $log->records;
 $cssLog = $log->recordsCss;
 $jsLog = $log->recordsJavaScript;
}

PHP

log = result['log'];
if (log is not None):
 mainLog = log['records'];
 cssLog = log['recordsCss'];
 jsLog = log['recordsJavaScript'];

Python

log = result["log"]
unless log.nil?
 mainLog = result["records"]
 cssLog = result["recordsCss"]
 jsLog = result["recordsJavaScript"]
end

Ruby

The following describes the JSONPath notation of the logs in the result object:

$.log.records
$.log.recordsCss
$.log.recordsJavaScript

REST

www.pdfreactor.com

G.22 Retrieving the logs of a conversion

445

G.23 Enable logging
Back to main chapter (p. 42)

Configuration config = new Configuration();
config.setLogLevel(LogLevel.DEBUG);
config.setDebugSettings(new DebugSettings()
 .setAppendLogs(true));

Java

Configuration config = new Configuration
{
 LogLevel = LogLevel.DEBUG,
 DebugSettings = new DebugSettings
 {
 AppendLogs = true
 }
};

C#

config = {
 logLevel: PDFreactor.LogLevel.DEBUG,
 debugSettings: {
 appendLogs: true
 }
}

JavaScript

config = {
 logLevel: PDFreactor.LogLevel.DEBUG,
 debugSettings: {
 appendLogs: true
 }
}

Node.js

$config = array(
 logLevel => LogLevel::DEBUG,
 debugSettings => array(
 appendLogs => true
)
);

PHP

config = {
 'logLevel': PDFreactor.LogLevel.DEBUG,
 'debugSettings': {
 appendLogs: True
 }
}

Python

config = {
 logLevel: PDFreactor::LogLevel::DEBUG,
 debugSettings: {
 appendLogs: true
 }
}

Ruby

{ "logLevel": "DEBUG", "debugSettings": { "all": true }} REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

446

G.24 Setting the log capacity
Back to main chapter (p. 42)

G.25 Setting the license key
Back to main chapter (p. 43)

config.setLogMaxLines(100); Java

config.LogMaxLines = 100; C#

config.logMaxLines = 100; JavaScript

config.logMaxLines = 100; Node.js

$config["logMaxLines"] = 100; PHP

config['logMaxLines'] = 100 Python

config['logMaxLines'] = 100 Ruby

{ "logMaxLines": 100 } REST

String licensekey = "<license>... your license ...</license>";
config.setLicenseKey(licensekey);

Java

string licensekey = "<license>... your license ...</license>";
config.LicenseKey = licensekey;

C#

const licensekey = "<license>... your license ...</license>";
config.licenseKey = licensekey;

JavaScript

const licensekey = "<license>... your license ...</license>";
config.licenseKey = licensekey;

Node.js

$licensekey = "<license>... your license ...</license>";
$config["licenseKey"] = $licensekey;

PHP

licensekey = "<license>... your license ...</license>"
config['licenseKey'] = licensekey

Python

licensekey = "<license>... your license ...</license>"
config['licenseKey'] = licensekey

Ruby

{ "licenseKey": "<license>... your license ...</license>" } REST

www.pdfreactor.com

G.24 Setting the log capacity

447

G.26 Ensure PDF has no eval notices
Back to main chapter (p. 43)

G.27 Content observer
Back to main chapter (p. 43)

config.setErrorPolicies(ErrorPolicy.LICENSE); Java

config.ErrorPolicies = new List<ErrorPolicy> { ErrorPolicy.LICENSE }; C#

config.errorPolicies = [PDFreactor.ErrorPolicy.LICENSE]; JavaScript

config.errorPolicies = [PDFreactor.ErrorPolicy.LICENSE]; Node.js

$config["errorPolicies"] = array(ErrorPolicy::LICENSE); PHP

config['errorPolicies'] = [PDFreactor.ErrorPolicy.LICENSE] Python

config['errorPolicies'] = [PDFreactor::ErrorPolicy::LICENSE] Ruby

{ "errorPolicies": ["LICENSE"] } REST

ContentObserver contentObserver = new ContentObserver();
// set up contentObserver, see below...
config.setContentObserver(contentObserver);

Java

ContentObserver contentObserver = new ContentObserver();
// set up contentObserver, see below...
config.ContentObserver = contentObserver;

C#

const contentObserver = {};
// set up contentObserver, see below...
config.contentObserver = contentObserver;

JavaScript

$contentObserver = array();
// set up contentObserver, see below...
$config["contentObserver"] = $contentObserver;

Node.js

$contentObserver = array();
// set up contentObserver, see below...
$config["contentObserver"] = $contentObserver;

PHP

contentObserver = {}
set up contentObserver, see below...
config['contentObserver'] = contentObserver

Python

contentObserver = {}
set up contentObserver, see below...
config['contentObserver'] = contentObserver

Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

448

G.28 Observe overflowing boxes
Back to main chapter (p. 44)

G.29 Retrieving the exceeding contents from a result object
Back to main chapter (p. 44)

{ "contentObserver": {set up contentObserver, see below...} } REST

contentObserver
 .setExceedingContentAnalyze(ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES)
 .setExceedingContentAgainst(ExceedingContentAgainst.PAGE_CONTENT);

Java

contentObserver.ExceedingContentAnalyze =
ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES;
contentObserver.ExceedingContentAgainst = ExceedingContentAgainst.PAGE_CONTENT;

C#

contentObserver.exceedingContentAnalyze =
PDFreactor.ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES;
contentObserver.exceedingContentAgainst =
PDFreactor.ExceedingContentAgainst.PAGE_CONTENT;

JavaScript

contentObserver.exceedingContentAnalyze =
PDFreactor.ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES;
contentObserver.exceedingContentAgainst =
PDFreactor.ExceedingContentAgainst.PAGE_CONTENT;

Node.js

$contentObserver["exceedingContentAnalyze"] =
ExceedingContentAnalyze::CONTENT_AND_STATIC_BOXES;
$contentObserver['exceedingContentAgainst"] = ExceedingContentAgainst::PAGE_CONTENT;

PHP

contentObserver['exceedingContentAnalyze'] =
PDFreactor.ExceedingContentAnalyze.CONTENT_AND_STATIC_BOXES
contentObserver['exceedingContentAgainst'] =
PDFreactor.ExceedingContentAgainst.PAGE_CONTENT

Python

contentObserver['exceedingContentAnalyze'] =
PDFreactor::ExceedingContentAnalyze::CONTENT_AND_STATIC_BOXES
contentObserver['exceedingContentAgainst'] =
PDFreactor::ExceedingContentAgainst::PAGE_CONTENT

Ruby

{ "exceedingContentAnalyze": "CONTENT_AND_STATIC_BOXES",
 "exceedingContentAgainst": "PAGE_CONTENT" }

REST

ExceedingContent[] exceedingContents = result.getExceedingContents(); Java

ExceedingContent[] exceedingContents = result.ExceedingContents; C#

const exceedingContents = result.exceedingContents; JavaScript

const exceedingContents = result.exceedingContents; Node.js

www.pdfreactor.com

G.28 Observe overflowing boxes

449

G.30 Observe missing resources
Back to main chapter (p. 44)

G.31 Retrieving the missing resources from a result object
Back to main chapter (p. 45)

$exceedingContents = $result->exceedingContents; PHP

exceedingContents = result['exceedingContents']; Python

exceedingContents = result["exceedingContents"] Ruby

The following describes the JSONPath notation of the document in the result object:

$.exceedingContents

REST

contentObserver.setMissingResources(true); Java

contentObserver.MissingResources = true; C#

contentObserver.missingResources = true; JavaScript

contentObserver.missingResources = true; Node.js

$contentObserver["missingResources"] = true; PHP

contentObserver['missingResources'] = True Python

contentObserver['missingResources'] = true Ruby

{ "missingResources": true } REST

MissingResource[] missingResources = result.getMissingResources(); Java

MissingResource[] missingResources = result.MissingResources; C#

const missingResources = result.missingResources; JavaScript

const missingResources = result.missingResources; Node.js

$missingResources = $result->missingResources; PHP

missingResources = result['missingResources']; Python

missingResources = result["missingResources"] Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

450

G.32 Observe connections
Back to main chapter (p. 45)

G.33 Retrieving the connections from a result object
Back to main chapter (p. 45)

The following describes the JSONPath notation of the document in the result object:

$.missingResources

REST

contentObserver.setConnections(true); Java

contentObserver.Connections = true; C#

contentObserver.connections = true; JavaScript

contentObserver.connections = true; Node.js

$contentObserver["connections"] = true; PHP

contentObserver['connections'] = True Python

contentObserver['connections'] = true Ruby

{ "connections": true } REST

Connection[] connections = result.getConnections(); Java

Connection[] connections = result.Connections; C#

const connections = result.connections; JavaScript

const connections = result.connections; Node.js

$connections = $result->connections; PHP

connections = result['connections']; Python

connections = result["connections"] Ruby

The following describes the JSONPath notation of the document in the result object:

$.connections

REST

www.pdfreactor.com

G.32 Observe connections

451

G.34 Error policies
Back to main chapter (p. 46)

G.35 Setting the log level
Back to main chapter (p. 46)

config.setErrorPolicies(
 ErrorPolicy.LICENSE,
 ErrorPolicy.MISSING_RESOURCE);

Java

config.ErrorPolicies = new List<ErrorPolicy>
{
 ErrorPolicy.LICENSE,
 ErrorPolicy.MISSING_RESOURCE
};

C#

config.errorPolicies = [
 PDFreactor.ErrorPolicy.LICENSE,
 PDFreactor.ErrorPolicy.MISSING_RESOURCE];

JavaScript

config.errorPolicies = [
 PDFreactor.ErrorPolicy.LICENSE,
 PDFreactor.ErrorPolicy.MISSING_RESOURCE];

Node.js

$config["errorPolicies"] = array(
 ErrorPolicy::LICENSE,
 ErrorPolicy::MISSING_RESOURCE);

PHP

config['errorPolicies'] = [
 PDFreactor.ErrorPolicy.LICENSE,
 PDFreactor.ErrorPolicy.MISSING_RESOURCE]

Python

config['errorPolicies'] = [
 PDFreactor::ErrorPolicy::LICENSE,
 PDFreactor::ErrorPolicy::MISSING_RESOURCE]

Ruby

{ "errorPolicies": ["LICENSE", "MISSING_RESOURCE"] } REST

config.setConversionTimeout(30); Java

config.ConversionTimeout = 30; C#

config.conversionTimeout = 30; JavaScript

config.conversionTimeout = 30; Node.js

$config["conversionTimeout"] = 30; PHP

config['conversionTimeout'] = 30 Python

config['conversionTimeout'] = 30 Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

452

G.36 Debug settings
Back to main chapter (p. 46)

G.37 Debug file dump
Back to main chapter (p. 48)

G.38 Inspectable Documents
Back to main chapter (p. 48)

{ "conversionTimeout": 30 } REST

config.setDebugSettings(new DebugSettings().setAll(true)); Java

config.DebugSettings = new DebugSettings { All: true }; C#

config.debugSettings = { all: true }; JavaScript

config.debugSettings = { all: true }; Node.js

$config["debugSettings"] = array("all" => true); PHP

config['debugSettings'] = { "all": True } Python

config['debugSettings'] = { "all": true } Ruby

{ "debugSettings": { "all": true }} REST

Use the debugLocalDir server parameter (p. 35) to configure the location. Java (WS client)

Use the debugLocalDir server parameter (p. 35) to configure the location. C#

Use the debugLocalDir server parameter (p. 35) to configure the location. JavaScript

Use the debugLocalDir server parameter (p. 35) to configure the location. Node.js

Use the debugLocalDir server parameter (p. 35) to configure the location. PHP

Use the debugLocalDir server parameter (p. 35) to configure the location. Python

Use the debugLocalDir server parameter (p. 35) to configure the location. Ruby

Use the debugLocalDir server parameter (p. 35) to configure the location. REST

config.setInspectableSettings(new InspectableSettings()
 .setEnabled(true));

Java

www.pdfreactor.com

G.36 Debug settings

453

G.39 Lenient HTTPS resource loading
Back to main chapter (p. 51)

G.40 Untrusted API context
Back to main chapter (p. 52)

config.InspectableSettings = new InspectableSettings
{
 Enabled = true
};

C#

config.inspectableSettings = {
 enabled: true
};

JavaScript

config.inspectableSettings = {
 enabled: true
};

Node.js

$config["inspectableSettings"] = array(
 "enabled" => true
);

PHP

config['inspectableSettings'] = {
 'enabled': True
}

Python

config['inspectableSettings'] = {
 enabled: true
}

Ruby

{ "inspectableSettings": {
 "enabled": true
}}

REST

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

config.setSecuritySettings(new SecuritySettings()
 .setUntrustedApi(true));

Java

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

454

G.41 Allow author API overrides
Back to main chapter (p. 52)

G.42 Automatic redirects
Back to main chapter (p. 52)

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

config.setSecuritySettings(new SecuritySettings()
 .setAllowAuthorApiOverrides(true));

Java

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

www.pdfreactor.com

G.41 Allow author API overrides

455

G.43 Allowing or denying connections
Back to main chapter (p. 53)

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Java (WS client)

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

C#

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

456

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Node.js

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

PHP

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Python

www.pdfreactor.com

G.43 Allowing or denying connections

457

G.44 Content from untrusted sources
Back to main chapter (p. 54)

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Ruby

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow internal company CMS",
 "host": "company-cms"
 }, {
 "action": "ALLOW",
 "name": "Allow public company CDN",
 "protocol": "https",
 "host": "cdn.company.com",
 "path": "/public%20assets/**"
 }, {
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

REST

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Java (WS client)

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

458

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

C#

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

JavaScript

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Node.js

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

PHP

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Python

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

Ruby

www.pdfreactor.com

G.44 Content from untrusted sources

459

G.45 Content from untrusted sources
Back to main chapter (p. 55)

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "DENY",
 "name": "Deny all",
 "path": "/**",
 "priority": -1
}]

REST

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

Java (WS client)

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

C#

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

JavaScript

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

460

G.46 Allowing file system access
Back to main chapter (p. 57)

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

PHP

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

Python

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

Ruby

Use the securitySettings.connectionRules server parameters (p. 35) to configure security, with the
following JSON file:

[{
 "action": "ALLOW",
 "name": "Allow access to resources inside a JAR",
 "protocol": "file",
 "path": "/path/to/my.jar",
 "entry": "/resources/**"
}]

REST

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

www.pdfreactor.com

G.46 Allowing file system access

461

G.47 Allowing non-local file URLs
Back to main chapter (p. 57)

G.48 Enable loading of external XML parser resources
Back to main chapter (p. 57)

G.49 API keys
Back to main chapter (p. 58)

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

pdfReactor.setApiKey("myApiKey"); Java

pdfReactor.setApiKey("myApiKey"); C#

pdfReactor.setApiKey("myApiKey"); JavaScript

pdfReactor.setApiKey("myApiKey"); Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

462

G.50 Disabling Version Disclosure
Back to main chapter (p. 59)

G.51 Forcing HTML document processing
Back to main chapter (p. 60)

pdfReactor.setApiKey("myApiKey"); PHP

pdfReactor.setApiKey("myApiKey"); Python

pdfReactor.setApiKey("myApiKey"); Ruby

When using the REST API directly, the API key must always be included in the URL as a query parameter:

/rest/version?apiKey=myApiKey

REST

Use the securitySettings server parameters (p. 35) to configure security. Java (WS client)

Use the securitySettings server parameters (p. 35) to configure security. C#

Use the securitySettings server parameters (p. 35) to configure security. JavaScript

Use the securitySettings server parameters (p. 35) to configure security. Node.js

Use the securitySettings server parameters (p. 35) to configure security. PHP

Use the securitySettings server parameters (p. 35) to configure security. Python

Use the securitySettings server parameters (p. 35) to configure security. Ruby

Use the securitySettings server parameters (p. 35) to configure security. REST

config.setDocumentType(Doctype.HTML5); Java

config.DocumentType = Doctype.HTML5; C#

config.documentType = PDFreactor.Doctype.HTML5; JavaScript

config.documentType = PDFreactor.Doctype.HTML5; Node.js

$config["documentType"] = Doctype::HTML5; PHP

config['documentType'] = PDFreactor.Doctype.HTML5 Python

config['documentType'] = PDFreactor::Doctype::HTML5 Ruby

{ "documentType": "HTML5" } REST

www.pdfreactor.com

G.50 Disabling Version Disclosure

463

G.52 Forcing legacy XHTML document processing
Back to main chapter (p. 60)

G.53 Using TagSoup cleanup
Back to main chapter (p. 60)

G.54 Forcing XML document processing
Back to main chapter (p. 61)

config.setDocumentType(Doctype.XHTML); Java

config.DocumentType = Doctype.XHTML; C#

config.documentType = PDFreactor.Doctype.XHTML; JavaScript

config.documentType = PDFreactor.Doctype.XHTML; Node.js

$config["documentType"] = Doctype::XHTML; PHP

config['documentType'] = PDFreactor.Doctype.XHTML Python

config['documentType'] = PDFreactor::Doctype::XHTML Ruby

{ "documentType": "XHTML" } REST

config.setCleanupTool(Cleanup.TAGSOUP); Java

config.CleanupTool = Cleanup.TAGSOUP; C#

config.cleanupTool = PDFreactor.Cleanup.TAGSOUP; JavaScript

config.cleanupTool = PDFreactor.Cleanup.TAGSOUP; Node.js

$config["cleanupTool"] = Cleanup::TAGSOUP; PHP

config['cleanupTool'] = PDFreactor.Cleanup.TAGSOUP Python

config['cleanupTool'] = PDFreactor::Cleanup::TAGSOUP Ruby

{ "cleanupTool": "TAGSOUP" } REST

config.setDocumentType(Doctype.XML); Java

config.DocumentType = Doctype.XML; C#

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

464

G.55 Transforming XML to HTML
Back to main chapter (p. 61)

G.56 Using UTF-8 encoding
Back to main chapter (p. 62)

config.documentType = PDFreactor.Doctype.XML; JavaScript

config.documentType = PDFreactor.Doctype.XML; Node.js

$config["documentType"] = Doctype::XML; PHP

config['documentType'] = PDFreactor.Doctype.XML Python

config['documentType'] = PDFreactor::Doctype::XML Ruby

{ "documentType": "XML" } REST

config.setPostTransformationDocumentType(Doctype.HTML5);
config.setXsltMode(true);

Java

config.PostTransformationDocumentType = Doctype.HTML5;
config.XsltMode = true;

C#

config.postTransformationDocumentType = PDFreactor.Doctype.HTML5;
config.xsltMode = true;

JavaScript

config.postTransformationDocumentType = PDFreactor.Doctype.HTML5;
config.xsltMode = true;

Node.js

$config["postTransformationDocumentType"] = Doctype::HTML5;
$config["xsltMode"] = true;

PHP

config['postTransformationDocumentType'] = PDFreactor.Doctype.HTML5
config['xsltMode'] = True

Python

config['postTransformationDocumentType'] = PDFreactor::Doctype::HTML5
config['xsltMode'] = true

Ruby

{ "postTransformationDocumentType": "HTML5", "xsltMode": true } REST

config.setEncoding("UTF-8"); Java

config.Encoding = "UTF-8"; C#

config.encoding = "UTF-8"; JavaScript

www.pdfreactor.com

G.55 Transforming XML to HTML

465

G.57 Disabling CSS validation
Back to main chapter (p. 63)

config.encoding = "UTF-8"; Node.js

$config["encoding"] = "UTF-8"; PHP

config['encoding'] = 'UTF-8' Python

config['encoding'] = 'UTF-8' Ruby

{ "encoding": "UTF-8" } REST

config.setCssSettings(new CssSettings()
 .setValidationMode(CssPropertySupport.ALL)
 .setSupportQueryMode(CssPropertySupport.ALL));

Java

config.CssSettings = new QuirksSettings
{
 ValidationMode = CssPropertySupport.ALL,
 SupportQueryMode = CssPropertySupport.ALL
};

C#

config.cssSettings = {
 validationMode: PDFreactor.CssPropertySupport.ALL,
 supportQueryMode: PDFreactor.CssPropertySupport.ALL
}

JavaScript

config.cssSettings = {
 validationMode: PDFreactor.CssPropertySupport.ALL,
 supportQueryMode: PDFreactor.CssPropertySupport.ALL
}

Node.js

$config["cssSettings"] = array(
 "validationMode" => CssPropertySupport::ALL,
 "supportQueryMode" => CssPropertySupport::ALL
);

PHP

config['cssSettings'] = {
 'validationMode': PDFreactor.CssPropertySupport.ALL,
 'supportQueryMode': PDFreactor.CssPropertySupport.ALL
}

Python

config['cssSettings'] = {
 validationMode: PDFreactor::CssPropertySupport::ALL,
 supportQueryMode: PDFreactor::CssPropertySupport::ALL
}

Ruby

{ "cssSettings": {
 "validationMode": "ALL",
 "supportQueryMode": "ALL"
}}

REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

466

G.58 Using case-insensitive CSS class selectors
Back to main chapter (p. 63)

G.59 Base URL
Back to main chapter (p. 64)

config.setQuirksSettings(new QuirksSettings()
 .setCaseSensitiveClassSelectors(QuirksMode.QUIRKS);

Java

config.QuirksSettings = new QuirksSettings
{
 CaseSensitiveClassSelectors = QuirksMode.QUIRKS
};

C#

config.quirksSettings = {
 caseSensitiveClassSelectors: PDFreactor.QuirksMode.QUIRKS
}

JavaScript

config.quirksSettings = {
 caseSensitiveClassSelectors: PDFreactor.QuirksMode.QUIRKS
}

Node.js

$config["quirksSettings"] = array(
 "caseSensitiveClassSelectors" => QuirksMode::QUIRKS
);

PHP

config['quirksSettings'] = {
 'caseSensitiveClassSelectors': PDFreactor.QuirksMode.QUIRKS
}

Python

config['quirksSettings'] = {
 caseSensitiveClassSelectors: PDFreactor::QuirksMode::QUIRKS
}

Ruby

{ "quirksSettings": {
 "caseSensitiveClassSelectors": "QUIRKS"
}}

REST

config.setBaseUrl("https://someServer/public/"); Java

config.BaseUrl = "https://someServer/public/"; C#

config.baseUrl = "https://someServer/public/"; JavaScript

config.baseUrl = "https://someServer/public/"; Node.js

$config["baseUrl"] = "https://someServer/public/"; PHP

config['baseUrl'] = "https://someServer/public/" Python

config['baseUrl'] = "https://someServer/public/" Ruby

www.pdfreactor.com

G.58 Using case-insensitive CSS class selectors

467

G.60 File URL as base URL
Back to main chapter (p. 64)

G.61 Resource request timeout
Back to main chapter (p. 64)

{ "baseUrl": "https://someServer/public/" } REST

config.setBaseUrl("file:///directory/"); Java

config.BaseUrl = "file:///c:/directory/"; C#

config.baseUrl = "file:///directory/"; JavaScript

config.baseUrl = "file:///directory/"; Node.js

$config["baseUrl"] = "file:///directory/"; PHP

config['baseUrl'] = "file:///directory/" Python

config['baseUrl'] = "file:///directory/" Ruby

{ "baseUrl": "file:///directory/" } REST

config.setNetworkSettings(new NetworkSettings()
 .setConnectTimeout(1000)
 .setReadTimeout(1000));

Java

config.NetworkSettings = new NetworkSettings
{
 ConnectTimeout = 1000,
 ReadTimeout = 1000
};

C#

config.networkSettings = {
 connectTimeout = 1000,
 readTimeout = 1000
};

JavaScript

config.networkSettings = {
 connectTimeout = 1000,
 readTimeout = 1000
};

Node.js

$config["networkSettings"] = [
 "connectTimeout" => 1000,
 "readTimeout" => 1000
];

PHP

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

468

G.62 Authentication credentials
Back to main chapter (p. 65)

config['networkSettings'] = {
 'connectTimeout': 1000,
 'readTimeout': 1000
}

Python

config['networkSettings'] = {
 'connectTimeout': 1000,
 'readTimeout': 1000
}

Ruby

{ "networkSettings: {
 "connectTimeout": 1000,
 "readTimeout": 1000
}}

REST

config.setNetworkSettings(new NetworkSettings()
 .setAuthenticationCredentials(new HttpCredentials()
 .setUsername("username")
 .setPassword("password")
 .setAuthScheme(HttpAuthScheme.DIGEST)
 .setRealm("My Realm")));

Java

config.NetworkSettings = new NetworkSettings
{
 AuthenticationCredentials = new List>HttpCredentials<
 {
 new HttpCredentials
 {
 Username = "username",
 Password = "password",
 AuthScheme = HttpAuthScheme.DIGEST,
 Realm = "My Realm"
 }
 }
};

C#

config.networkSettings = {
 authenticationCredentials: [
 username: "username",
 password: "password",
 authScheme: PDFreactor.HttpAuthScheme.DIGEST,
 realm: "My Realm"
]
};

JavaScript

config.networkSettings = {
 authenticationCredentials: [
 username: "username",
 password: "password",
 authScheme: PDFreactor.HttpAuthScheme.DIGEST,
 realm: "My Realm"
]
};

Node.js

www.pdfreactor.com

G.62 Authentication credentials

469

G.63 Custom user agent header
Back to main chapter (p. 65)

$config["networkSettings"] = [
 "authenticationCredentials" => [
 {
 "username" => "username",
 "password" => "password",
 "authScheme" => HttpAuthScheme::DIGEST,
 "realm" => "My Realm"
 }
]
];

PHP

config['networkSettings'] = {
 'authenticationCredentials': [
 {
 'username': 'username',
 'password': 'password',
 'authScheme': PDFreactor.HttpAuthScheme.DIGEST,
 'realm': 'My Realm'
 }
]
}

Python

config['networkSettings'] = {
 'authenticationCredentials': [
 {
 'username': "username",
 'password': "password",
 'authScheme': PDFreactor::HttpAuthScheme::DIGEST,
 'realm': "My Realm"
 }
]
}

Ruby

{ "networkSettings: {
 "authenticationCredentials": [
 "username": "username",
 "password": "password",
 "authScheme": "DIGEST",
 "realm": "My Realm"
]
}}

REST

config.setNetworkSettings(new NetworkSettings()
 .setRequestHeaders(
 new KeyValuePair("User-Agent", "MyApp/2.0"));

Java

config.NetworkSettings = new NetworkSettings
{
 RequestHeaders = new List<KeyValuePair>
 {
 new KeyValuePair("User-Agent", "MyApp/2.0")
 }
};

C#

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

470

G.64 Session cookies
Back to main chapter (p. 66)

config.networkSettings = {
 requestHeaders = [
 { key: "User-Agent", value: "MyApp/2.0" }
]
};

JavaScript

config.networkSettings = {
 requestHeaders = [
 { key: "User-Agent", value: "MyApp/2.0" }
]
};

Node.js

$config["networkSettings"] = [
 "requestHeaders": [
 [
 "key" => "User-Agent",
 "value" => "MyApp/2.0"
]
);

PHP

config['networkSettings'] = {
 'requestHeaders'] = [
 { 'key': "User-Agent", 'value': "MyApp/2.0" }
]
}

Python

config['networkSettings'] = {
 'requestHeaders' = [
 { key: "User-Agent", value: "MyApp/2.0" }
]
}

Ruby

{ "networkSettings": {
 "requestHeaders": [
 { "key": "User-Agent", "value": "MyApp/2.0" }
]
}}

REST

config.setNetworkSettings(new NetworkSettings()
 .setCookies(new Cookie()
 .setName("JSESSIONID")
 .setValue("123456789")));

Java

config.NetworkSettings = new NetworkSettings
{
 Cookies = new List>Cookie<
 {
 new Cookie
 {
 Name = "JSESSIONID",
 Value = "123456789"
 }
 }
};

C#

www.pdfreactor.com

G.64 Session cookies

471

G.65 Authentication credentials
Back to main chapter (p. 66)

config.networkSettings = {
 cookies: [
 name: "JSESSIONID",
 value: "123456789"
]
};

JavaScript

config.networkSettings = {
 cookies: [
 name: "JSESSIONID",
 value: "123456789"
]
};

Node.js

$config["networkSettings"] = [
 "cookies" => [
 {
 "name" => "JSESSIONID",
 "value" => "123456789"
 }
]
];

PHP

config['networkSettings'] = {
 'cookies': [
 {
 'name': 'JSESSIONID',
 'value': '123456789'
 }
]
}

Python

config['networkSettings'] = {
 'cookies': [
 {
 'name': "JSESSIONID",
 'value': "123456789"
 }
]
}

Ruby

{ "networkSettings: {
 "cookies": [
 "name": "JSESSIONID",
 "value": "123456789"
]
}}

REST

config.setNetworkSettings(new NetworkSettings()
 .setCookiePolicy(CookiePolicy.RELAXED));

Java

config.NetworkSettings = new NetworkSettings
{
 CookiePolicy = CookiePolicy.RELAXED
};

C#

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

472

G.66 Authentication credentials
Back to main chapter (p. 67)

config.networkSettings = {
 cookiePolicy: PDFreactor.CookiePolicy.RELAXED
};

JavaScript

config.networkSettings = {
 cookiePolicy: PDFreactor.CookiePolicy.RELAXED
};

Node.js

$config["networkSettings"] = [
 "cookiePolicy" => CookiePolicy::RELAXED
];

PHP

config['networkSettings'] = {
 'cookiePolicy': PDFreactor.CookiePolicy.RELAXED
}

Python

config['networkSettings'] = {
 'cookiePolicy': PDFreactor::CookiePolicy::RELAXED
}

Ruby

{ "networkSettings: {
 "cookiePolicy: "RELAXED"
}}

REST

config.setUrlRewriteSettings(new UrlRewriteSettings()
 .setRules(
 new UrlRewriteRule()
 .setPattern("^http://myOldHost/(.*)$")
 .setSubstitution("https://myNewHost/$1")
)
);

Java

config.UrlRewriteSettings = new UrlRewriteSettings
{
 Rules = new List<Resource>
 {
 new UrlRewriteRule()
 {
 Pattern = "^http://myOldHost/(.*)$",
 Substitution = "https://myNewHost/$1"
 }
 }
};

C#

config.urlRewriteSettings = {
 rules: [{
 pattern: "^http://myOldHost/(.*)$",
 substitution: "https://myNewHost/$1"
 }]
};

JavaScript

www.pdfreactor.com

G.66 Authentication credentials

473

G.67 User style sheets
Back to main chapter (p. 68)

config.urlRewriteSettings = {
 rules: [{
 pattern: "^http://myOldHost/(.*)$",
 substitution: "https://myNewHost/$1"
 }]
};

Node.js

$config["urlRewriteSettings"] = array(
 "rules" => array(
 array(
 "pattern" => "^http://myOldHost/(.*)$",
 "substitution" => "https://myNewHost/$1"
)
)
);

PHP

config['urlRewriteSettings'] = {
 'rules': [{
 'pattern': "^http://myOldHost/(.*)$"
 'substitution': "https://myNewHost/$1"
 }]
}

Python

config['urlRewriteSettings'] = {
 rules: [{
 pattern: "^http://myOldHost/(.*)$",
 substitution: "https://myNewHost/$1"
 }]
}

Ruby

{ "urlRewriteSettings": {
 "rules": [{
 "pattern": "^http://myOldHost/(.*)$",
 "substitution": "https://myNewHost/$1"
 }]
}}

REST

config.setUserStyleSheets(
 new Resource().setContent("p { color: red; }"),
 new Resource().setUri("http://myServer/my.css"));

Java

config.UserStyleSheets = new List<Resource>
{
 new Resource() { Content = "p { color: red; }" },
 new Resource() { Uri = "http://myServer/my.css" }
};

C#

config.userStyleSheets = [
 { content: "p { color: red; }" },
 { uri: "http://myServer/my.css" }
];

JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

474

G.68 Integration style sheets
Back to main chapter (p. 68)

config.userStyleSheets = [
 { content: "p { color: red; }" },
 { uri: "http://myServer/my.css" }
];

Node.js

$config["userStyleSheets"] = array(
 array("content" => "p { color: red; }"),
 array("uri" => "http://myServer/my.css")
);

PHP

config['userStyleSheets'] = [
 { 'content': 'p { color: red; }' },
 { 'uri': 'http://myServer/my.css' }
]

Python

config['userStyleSheets'] = [
 { 'content': 'p { color: red; }' },
 { 'uri': 'http://myServer/my.css' }
]

Ruby

{ "userStyleSheets": [
 { "content": "p { color: red; }" },
 { "uri": "http://myServer/my.css" }
]}

REST

config.setIntegrationStyleSheets(
 new Resource().setContent("p { font-family: sans-serif }"),
 new Resource().setUri("http://myServer/corporate-identity.css"));

Java

config.IntegrationStyleSheets = new List<Resource>
{
 new Resource() { Content = "p { font-family: sans-serif }" },
 new Resource() { Uri = "http://myServer/corporate-identity.css" }
};

C#

config.integrationStyleSheets = [
 { content: "p { font-family: sans-serif }" },
 { uri: "http://myServer/corporate-identity.css" }
];

JavaScript

config.integrationStyleSheets = [
 { content: "p { font-family: sans-serif }" },
 { uri: "http://myServer/corporate-identity.css" }
];

Node.js

$config["integrationStyleSheets"] = array(
 array("content" => "p { font-family: sans-serif }"),
 array("uri" => "http://myServer/corporate-identity.css")
);

PHP

www.pdfreactor.com

G.68 Integration style sheets

475

G.69 User scripts
Back to main chapter (p. 68)

config['integrationStyleSheets'] = [
 { 'content': 'p { font-family: sans-serif }' },
 { 'uri': 'http://myServer/corporate-identity.css' }
]

Python

config['integrationStyleSheets'] = [
 { 'content': 'p { font-family: sans-serif }' },
 { 'uri': 'http://myServer/corporate-identity.css' }
]

Ruby

{ "integrationStyleSheets": [
 { "content": "p { font-family: sans-serif }" },
 { "uri": "http://myServer/corporate-identity.css" }
]}

REST

config.setUserScripts(
 new Resource().setContent("console.log('executed first')")
 .setBeforeDocumentScripts(true),
 new Resource().setUri("http://myServer/my.js"));

Java

config.UserScripts = new List<Resource>
{
 new Resource()
 {
 Content = "console.log('executed first')",
 BeforeDocumentScripts = true
 },
 new Resource() { Uri = "http://myServer/my.js" }
};

C#

config.userScripts = [
 {
 content: "console.log('executed first')",
 beforeDocumentScripts: true
 },
 { uri: "http://myServer/my.js" }
];

JavaScript

config.userScripts = [
 {
 content: "console.log('executed first')",
 beforeDocumentScripts: true
 },
 { uri: "http://myServer/my.js" }
];

Node.js

$config["userScripts"] = array(
 array(
 "content" => "console.log('executed first')"),
 "beforeDocumentScripts" => true
),
 array("uri" => "http://myServer/my.js")
);

PHP

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

476

G.70 XSLT style sheets
Back to main chapter (p. 68)

config['userScripts'] = [
 {
 'content': 'console.log("executed first")',
 'beforeDocumentScripts': True
 },
 { 'uri': 'http://myServer/my.js' }
]

Python

config['userScripts'] = [
 {
 'content': 'console.log("executed first")',
 'beforeDocumentScripts': true
 },
 { 'uri': 'http://myServer/my.js' }
]

Ruby

{ "userScripts": [
 {
 "content": "console.log('executed first')",
 "beforeDocumentScripts": true
 },
 { "uri": "http://myServer/my.js" }
]}

REST

config.setXsltStyleSheets(
 new Resource().setUri("http://myServer/my.xsl"));

Java

config.XsltStyleSheets = new List<Resource>
{
 new Resource() { Uri = "http://myServer/my.xsl" }
};

C#

config.xsltStyleSheets = [
 { uri: "http://myServer/my.xsl" }
];

JavaScript

config.xsltStyleSheets = [
 { uri: "http://myServer/my.xsl" }
];

Node.js

$config["xsltStyleSheets"] = array(
 array("uri" => "http://myServer/my.xsl")
);

PHP

config['xsltStyleSheets'] = [
 { 'uri': 'http://myServer/my.xsl' }
]

Python

config['xsltStyleSheets'] = [
 { 'uri': 'http://myServer/my.xsl' }
]

Ruby

www.pdfreactor.com

G.70 XSLT style sheets

477

G.71 Color spaces
Back to main chapter (p. 69)

G.72 Processing large high-res images
Back to main chapter (p. 71)

{ "xsltStyleSheets": [
 { "uri": "http://myServer/my.xsl" }
]}

REST

config.setColorSpaceSettings(new ColorSpaceSettings()
 .setTargetColorSpace(ColorSpace.CMYK);

Java

config.ColorSpaceSettings = new ColorSpaceSettings
{
 TargetColorSpace = ColorSpace.CMYK
};

C#

config.colorSpaceSettings = {
 targetColorSpace: PDFreactor.ColorSpace.CMYK
}

JavaScript

config.colorSpaceSettings = {
 targetColorSpace: PDFreactor.ColorSpace.CMYK
}

Node.js

$config["colorSpaceSettings"] = array(
 "targetColorSpace" => ColorSpace::CMYK
);

PHP

config['colorSpaceSettings'] = {
 'targetColorSpace': PDFreactor.ColorSpace.CMYK
}

Python

config['colorSpaceSettings'] = {
 targetColorSpace: PDFreactor::ColorSpace::CMYK
}

Ruby

{ "colorSpaceSettings": {
 "targetColorSpace": "CMYK"
}}

REST

config.setProcessingPreferences(
 ProcessingPreferences.SAVE_MEMORY_IMAGES);

Java

config.ProcessingPreferences = new List<ProcessingPreferences>
{
 ProcessingPreferences.SAVE_MEMORY_IMAGES
};

C#

config.processingPreferences =
 [PDFreactor.ProcessingPreferences.SAVE_MEMORY_IMAGES];

JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

478

G.73 Add scripts manually
Back to main chapter (p. 82)

config.processingPreferences =
 [PDFreactor.ProcessingPreferences.SAVE_MEMORY_IMAGES];

Node.js

$config["processingPreferences"] =
 array(ProcessingPreferences::SAVE_MEMORY_IMAGES);

PHP

config['processingPreferences'] =
 [PDFreactor.ProcessingPreferences.SAVE_MEMORY_IMAGES]

Python

config['processingPreferences'] =
 [PDFreactor::ProcessingPreferences::SAVE_MEMORY_IMAGES]

Ruby

{ "processingPreferences": ["SAVE_MEMORY_IMAGES"] } REST

config.setUserScripts(
 new Resource().setContent("console.log('test')"));

Java

config.UserScripts = new List<Resource>
{
 new Resource() { Content = "console.log('test')" }
};

C#

config.UserScripts = [
 { content: "console.log('test')" }
];

JavaScript

config.UserScripts = [
 { content: "console.log('test')" }
];

Node.js

$config["UserScripts"] = array(
 array("content" => "console.log('test')")
);

PHP

config['UserScripts'] = [
 { 'content': 'console.log("test")' }
]

Python

config['UserScripts'] = [
 { 'content': 'console.log("test")' }
]

Ruby

{ "userScripts": [
 { "content": "console.log('test')" }
]}

REST

www.pdfreactor.com

G.73 Add scripts manually

479

G.74 Disable JavaScript processing
Back to main chapter (p. 82)

G.75 Changing the JavaScript engine to Rhino
Back to main chapter (p. 83)

config.setJavaScriptSettings(new JavaScriptSettings()
 .setDisabled(true));

Java

config.JavaScriptSettings = new JavaScriptSettings
{
 Disabled = true
};

C#

config.javaScriptSettings = {
 disabled: true
};

JavaScript

config.javaScriptSettings = {
 disabled: true
};

Node.js

$config["javaScriptSettings"] = array(
 "disabled" => true
);

PHP

config['javaScriptSettings'] = {
 'disabled': True
}

Python

config['javaScriptSettings'] = {
 disabled: true
}

Ruby

{ "javaScriptSettings": {
 "disabled": true
}}

REST

config.setJavaScriptSettings(new JavaScriptSettings()
 .setJavaScriptEngine(JavaScriptEngine.RHINO));

Java

config.JavaScriptSettings = new JavaScriptSettings
{
 JavaScriptEngine = JavaScriptEngine.RHINO
};

C#

config.javaScriptSettings = {
 javaScriptEngine: PDFreactor.JavaScriptEngine.RHINO
};

JavaScript

config.javaScriptSettings = {
 javaScriptEngine: PDFreactor.JavaScriptEngine.RHINO
};

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

480

G.76 PDF metadata
Back to main chapter (p. 86)

G.77 Retrieving the JavaScript export from a result object
Back to main chapter (p. 87)

$config["javaScriptSettings"] = array(
 "javaScriptEngine" => JavaScriptEngine::RHINO
);

PHP

config['javaScriptSettings'] = {
 'javaScriptEngine': PDFreactor.JavaScriptEngine.RHINO
}

Python

config['javaScriptSettings'] = {
 'javaScriptEngine': PDFreactor::JavaScriptEngine::RHINO
}

Ruby

{ "javaScriptSettings": {
 "javaScriptEngine": "RHINO"
}}

REST

config.setAuthor("Brian Greene");
config.setTitle("The Elegant Universe");

Java

config.Author = "Brian Greene";
config.Title = "The Elegant Universe";

C#

config.author = "Brian Greene";
config.title = "The Elegant Universe";

JavaScript

config.author = "Brian Greene";
config.title = "The Elegant Universe";

Node.js

$config["author"] = "Brian Greene";
$config["title"] = "The Elegant Universe";

PHP

config['author'] = "Brian Greene"
config['title'] = "The Elegant Universe"

Python

config['author'] = "Brian Greene"
config['title'] = "The Elegant Universe"

Ruby

{ "author": "Brian Greene", "title": "The Elegant Universe" } REST

String javaScriptExports = result.getJavaScriptExports(); Java

String javaScriptExports = result.JavaScriptExports; C#

www.pdfreactor.com

G.76 PDF metadata

481

G.78 Limiting JavaScript processing time
Back to main chapter (p. 88)

const javaScriptExports = result.javaScriptExports; JavaScript

const javaScriptExports = result.javaScriptExports; Node.js

$javaScriptExports = $result->javaScriptExports; PHP

javaScriptExports = result['javaScriptExports']; Python

javaScriptExports = result["javaScriptExports"] Ruby

The following describes the JSONPath notation of the JavaScript exports in the result object:

$.javaScriptExports

REST

config.setJavaScriptSettings(new JavaScriptSettings()
 .setTimeout(20));

Java

config.JavaScriptSettings = new JavaScriptSettings
{
 Timeout = 20
};

C#

config.javaScriptSettings = {
 timeout: 20
};

JavaScript

config.javaScriptSettings = {
 timeout: 20
};

Node.js

$config["javaScriptSettings"] = array(
 "timeout" => 20
);

PHP

config['javaScriptSettings'] = {
 'timeout': 20
}

Python

config['javaScriptSettings'] = {
 'timeout': 20
}

Ruby

{ "javaScriptSettings": {
 "timeout": 20
}}

REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

482

G.79 Create ToC with Awesomizr
Back to main chapter (p. 89)

config
 .setUserStyleSheets(new Resource()
 .setUri("awesomizr.css"))
 .setUserScripts(
 new Resource()
 .setContent("import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();")
 .setSubtype(ResourceSubtype.JAVASCRIPT_MODULE));

Java

config.UserStyleSheets = new List<Resource>
{
 new Resource
 {
 Uri = "awesomizr.css"
 }
};
config.UserScripts = new List<Resource>
{
 new Resource
 {
 Content = "import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();",
 Subtype = PDFreactor.ResourceSubtype.JAVASCRIPT_MODULE
 }
};

C#

config.userStyleSheets = [{
 uri: "awesomizr.css"
}];
config.userScripts = [{
 content: "import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();",
 subtype: PDFreactor.ResourceSubtype.JAVASCRIPT_MODULE
}];

JavaScript

config.userStyleSheets = [{
 uri: "awesomizr.css"
}];
config.userScripts = [{
 content: "import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();",
 subtype: PDFreactor.ResourceSubtype.JAVASCRIPT_MODULE
}];

Node.js

$config["userStyleSheets"] = array(
 array(
 "uri" => "awesomizr.css"
)
);
$config["userScripts"] = array(
 array(
 "content" => "import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();",
 "subtype" => ResourceSubtype::JAVASCRIPT_MODULE
)
);

PHP

www.pdfreactor.com

G.79 Create ToC with Awesomizr

483

G.80 Adding bookmarks
Back to main chapter (p. 90)

G.81 Adding links
Back to main chapter (p. 91)

config['userStyleSheets'] = [{
 'uri': 'awesomizr.css'
}]
config['userScripts] = [{
 'content': 'import * as Awesomizr from "./awesomizr.js";
Awesomizr.createTableOfContents();',
 'subtype': PDFreactor.ResourceSubtype.JAVASCRIPT_MODULE
}]

Python

config['userStyleSheets'] = [{
 'uri': 'awesomizr.css'
}]
config['userScripts] = [{
 'content': 'import * as Awesomizr from "./awesomizr.js";
Awesomizr.createTableOfContents();',
 'subtype': PDFreactor::ResourceSubtype::JAVASCRIPT_MODULE
}]

Ruby

{
 "userStyleSheets": [{
 "uri": "awesomizr.css"
 }],
 "userScripts": [{
 "content": "import * as Awesomizr from './awesomizr.js';
Awesomizr.createTableOfContents();",
 "subtype": "JAVASCRIPT_MODULE"
 }]
}

REST

config.setDisableBookmarks(true); Java

config.DisableBookmarks = true; C#

config.disableBookmarks = true; JavaScript

config.disableBookmarks = true; Node.js

$config["disableBookmarks"] = true; PHP

config['disableBookmarks'] = True Python

config['disableBookmarks'] = true Ruby

{ "disableBookmarks": true } REST

config.setDisableLinks(true); Java

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

484

G.82 Override metadata
Back to main chapter (p. 93)

config.DisableLinks = true; C#

config.disableLinks = true; JavaScript

config.disableLinks = true; Node.js

$config["disableLinks"] = true; PHP

config['disableLinks'] = True Python

config['disableLinks'] = true Ruby

{ "disableLinks": true } REST

config
 setAuthor("John Doe")
 setTitle("Architecture of the World Wide Web, Volume One")
 setSubject("Architecture of the world wide web")
 setCreator("John's DoeNuts, Inc.")
 setKeywords("w3c, www");

Java

config.Author = "John Doe";
config.Title = "Architecture of the World Wide Web, Volume One";
config.Subject = "Architecture of the world wide web";
config.Creator = "John's DoeNuts, Inc.";
config.Keywords = "w3c, www";

C#

config.author = "John Doe";
config.title = "Architecture of the World Wide Web, Volume One";
config.subject = "Architecture of the world wide web";
config.creator = "John's DoeNuts, Inc.";
config.keywords = "w3c, www";

JavaScript

config.author = "John Doe";
config.title = "Architecture of the World Wide Web, Volume One";
config.subject = "Architecture of the world wide web";
config.creator = "John's DoeNuts, Inc.";
config.keywords = "w3c, www";

Node.js

$config["author"] = "John Doe";
$config["title"] = "Architecture of the World Wide Web, Volume One";
$config["subject"] = "Architecture of the world wide web";
$config["creator"] = "John's DoeNuts, Inc.";
$config["keywords"] = "w3c, www";

PHP

config['author'] = 'John Doe'
config['title'] = 'Architecture of the World Wide Web, Volume One'
config['subject'] = 'Architecture of the world wide web'
config['creator'] = 'John's DoeNuts, Inc.'
config['keywords'] = 'w3c, www'

Python

www.pdfreactor.com

G.82 Override metadata

485

G.83 Custom document properties
Back to main chapter (p. 93)

config['author'] = 'John Doe'
config['title'] = 'Architecture of the World Wide Web, Volume One'
config['subject'] = 'Architecture of the world wide web'
config['creator'] = 'John's DoeNuts, Inc.'
config['keywords'] = 'w3c, www'

Ruby

{ "author": "John Doe",
 "title": "Architecture of the World Wide Web, Volume One",
 "subject": "Architecture of the world wide web",
 "creator": "John's DoeNuts, Inc.",
 "keywords": "w3c, www" }

REST

config.setCustomDocumentProperties(
 new KeyValuePair("feedback address", "peter@miller.com"));

Java

config.CustomDocumentProperties = new List<KeyValuePair>
{
 new KeyValuePair("feedback address", "peter@miller.com")
};

C#

config.customDocumentProperties = [
 { key: "feedback address", value: "peter@miller.com" }
];

JavaScript

config.customDocumentProperties = [
 { key: "feedback address", value: "peter@miller.com" }
];

Node.js

$config["customDocumentProperties"] = array(
 array(
 "key" => "feedback address",
 "value" => "peter@miller.com"
)
);

PHP

config['customDocumentProperties'] = [
 { 'key': "feedback address", 'value': "peter@miller.com" }
]

Python

config['customDocumentProperties'] = [
 { key: "feedback address", value: "peter@miller.com" }
]

Ruby

{ "customDocumentProperties": [
 { "key": "feedback address", "value": "peter@miller.com" }
]}

REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

486

G.84 Adding tags
Back to main chapter (p. 95)

G.85 PDF/A3-a conformance
Back to main chapter (p. 97)

G.86 Ignoring image alpha channels
Back to main chapter (p. 97)

config.setAddTags(true); Java

config.AddTags = true; C#

config.addTags = true; JavaScript

config.addTags = true; Node.js

$config["addTags"] = true; PHP

config['addTags'] = True Python

config['addTags'] = true Ruby

{ "addTags": true } REST

config.setConformance(Conformance.PDFA3A); Java

config.Conformance = Conformance.PDFA3A; C#

config.conformance = PDFreactor.Conformance.PDFA3A; JavaScript

config.conformance = PDFreactor.Conformance.PDFA3A; Node.js

$config["conformance"] = Conformance::PDFA3A; PHP

config['conformance'] = PDFreactor.Conformance.PDFA3A Python

config['conformance'] = PDFreactor::Conformance::PDFA3A Ruby

{ "conformance": "PDFA3A" } REST

config.setIgnoreAlpha(true); Java

config.IgnoreAlpha = true; C#

www.pdfreactor.com

G.84 Adding tags

487

G.87 Validating conformance
Back to main chapter (p. 97)

G.88 PDF/A + PDF/UA conformance
Back to main chapter (p. 97)

config.ignoreAlpha = true; JavaScript

config.ignoreAlpha = true; Node.js

$config["ignoreAlpha"] = true; PHP

config['ignoreAlpha'] = True Python

config['ignoreAlpha'] = true Ruby

{ "ignoreAlpha": true } REST

config.setValidateConformance(true); Java

config.ValidateConformance = true; C#

config.validateConformance = true; JavaScript

config.validateConformance = true; Node.js

$config["validateConformance"] = true; PHP

config['validateConformance'] = True Python

config['validateConformance'] = true Ruby

{ "validateConformance": true } REST

config.setConformance(Conformance.PDFA3A_PDFUA); Java

config.Conformance = Conformance.PDFA3A_PDFUA; C#

config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA; JavaScript

config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA; Node.js

$config["conformance"] = Conformance::PDFA3A_PDFUA; PHP

config['conformance'] = PDFreactor.Conformance.PDFA3A_PDFUA Python

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

488

G.89 PDF/UA conformance
Back to main chapter (p. 98)

G.90 PDF/A3-a + PDF/UA conformance
Back to main chapter (p. 98)

config['conformance'] = PDFreactor::Conformance::PDFA3A_PDFUA Ruby

{ "conformance": "PDFA3A_PDFUA" } REST

config.setConformance(Conformance.PDFUA); Java

config.Conformance = Conformance.PDFUA; C#

config.conformance = PDFreactor.Conformance.PDFUA; JavaScript

config.conformance = PDFreactor.Conformance.PDFUA; Node.js

$config["conformance"] = Conformance::PDFUA; PHP

config['conformance'] = PDFreactor.Conformance.PDFUA Python

config['conformance'] = PDFreactor::Conformance::PDFUA Ruby

{ "conformance": "PDFUA" } REST

config.setConformance(Conformance.PDFA3A_PDFUA); Java

config.Conformance = Conformance.PDFA3A_PDFUA; C#

config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA; JavaScript

config.conformance = PDFreactor.Conformance.PDFA3A_PDFUA; Node.js

$config["conformance"] = Conformance::PDFA3A_PDFUA; PHP

config['conformance'] = PDFreactor.Conformance.PDFA3A_PDFUA Python

config['conformance'] = PDFreactor::Conformance::PDFA3A_PDFUA Ruby

{ "conformance": "PDFA3A_PDFUA" } REST

www.pdfreactor.com

G.89 PDF/UA conformance

489

G.91 PDF/X4 conformance
Back to main chapter (p. 99)

G.92 Output intent
Back to main chapter (p. 99)

config.setConformance(Conformance.PDFX4); Java

config.Conformance = Conformance.PDFX4; C#

config.conformance = PDFreactor.Conformance.PDFX4; JavaScript

config.conformance = PDFreactor.Conformance.PDFX4; Node.js

$config["conformance"] = Conformance::PDFX4; PHP

config['conformance'] = PDFreactor.Conformance.PDFX4 Python

config['conformance'] = PDFreactor::Conformance::PDFX4 Ruby

{ "conformance": "PDFX4" } REST

config.setOutputIntent(new OutputIntent()
 .setIdentifier("ICC profile identifier")

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 .setUrl("URL/to/ICC/profile")

 // Use this if you want to specify the ICC profile's binary data
 .setData(iccProfileByteArray)
);

Java

config.OutputIntent = new OutputIntent
{
 Identifier = "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 Url = "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data
 Data = iccProfileByteArray
};

C#

config.outputIntent = {
 identifier: "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 url: "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data as base64 string
 data: iccProfileBase64
};

JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

490

G.93 Color space conversion to CMYK
Back to main chapter (p. 99)

config.outputIntent = {
 identifier: "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 url: "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data as base64 string
 data: iccProfileBase64
};

Node.js

$config["outputIntent"] = array(
 "identifier" => "ICC profile identifier",

 // Use this if you are loading the ICC profile via URL (ignored if data is set)
 "url" => "URL/to/ICC/profile",

 // Use this if you want to specify the ICC profile's binary data as base64 string
 "data" => iccProfileBase64
);

PHP

config['outputIntent'] = {
 'identifier': "ICC profile identifier",

 # Use this if you are loading the ICC profile via URL (ignored if data is set)
 'url': "URL/to/ICC/profile",

 # Use this if you want to specify the ICC profile's binary data as base64 string
 'data': iccProfileBase64
}

Python

config['outputIntent'] = {
 identifier: "ICC profile identifier",

 # Use this if you are loading the ICC profile via URL (ignored if data is set)
 url: "URL/to/ICC/profile",

 # Use this if you want to specify the ICC profile's binary data as base64 string
 data: iccProfileBase64
}

Ruby

{ "outputIntent": {
 "identifier": "ICC profile identifier",
 "url": "URL/to/ICC/profile",
 "data": iccProfileBase64
}}

REST

// The required output intent
config.setOutputIntent(new OutputIntent()
 .setIdentifier("ICC profile identifier")
 .setUrl("URL/to/ICC/profile"));
// Color space conversion settings
config.setColorSpaceSettings(new ColorSpaceSettings()
 // The same profile as the output intent, required for accurate conversion to CMYK
 .setCmykIccProfile(new Resource().setUri("URL/to/ICC/profile"))
 // Not necessary to set in this case (overridden by output intent), but recommended
 .setTargetColorSpace(ColorSpace.CMYK)
 // Enable conversion of RGB colors and images to CMYK
 .setConversionEnabled(true));

Java

www.pdfreactor.com

G.93 Color space conversion to CMYK

491

// The required output intent
config.OutputIntent = new OutputIntent()
{
 Identifier = "ICC profile identifier",
 Url = "URL/to/ICC/profile"
};
// Color space conversion settings
config.ColorSpaceSettings = new ColorSpaceSettings
{
 // The same profile as the output intent, required for accurate conversion to CMYK
 CmykIccProfile = new Resource() { Uri = "URL/to/ICC/profile" },
 // Not necessary to set in this case (overridden by output intent), but recommended
 TargetColorSpace = ColorSpace.CMYK,
 // Enable conversion of RGB colors and images to CMYK
 ConversionEnabled = true
};

C#

// The required output intent
config.outputIntent = {
 identifier: "ICC profile identifier",
 url: "URL/to/ICC/profile"
};
// Color space conversion settings
config.colorSpaceSettings = {
 // The same profile as the output intent, required for accurate conversion to CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (overridden by output intent), but recommended
 targetColorSpace: PDFreactor.ColorSpace.CMYK,
 // Enable conversion of RGB colors and images to CMYK
 conversionEnabled: true
};

JavaScript

// The required output intent
config.outputIntent = {
 identifier: "ICC profile identifier",
 url: "URL/to/ICC/profile"
};
// Color space conversion settings
config.colorSpaceSettings = {
 // The same profile as the output intent, required for accurate conversion to CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (overridden by output intent), but recommended
 targetColorSpace: PDFreactor.ColorSpace.CMYK,
 // Enable conversion of RGB colors and images to CMYK
 conversionEnabled: true
};

Node.js

// The required output intent
$config["outputIntent"] = array(
 "identifier" => "ICC profile identifier",
 "url" => "URL/to/ICC/profile"
);
// Color space conversion settings
$config["colorSpaceSettings"] = array(
 // The same profile as the output intent, required for accurate conversion to CMYK
 "cmykIccProfile" => array("uri" => "URL/to/ICC/profile"),
 // Not necessary to set in this case (overridden by output intent), but recommended
 "targetColorSpace" => ColorSpace::CMYK,
 // Enable conversion of RGB colors and images to CMYK
 "conversionEnabled" => true
);

PHP

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

492

G.94 Creating web version
Back to main chapter (p. 100)

The required output intent
config['outputIntent'] = {
 'identifier': "ICC profile identifier",
 'url': "URL/to/ICC/profile"
}
Color space conversion settings
config['colorSpaceSettings'] = {
 # The same profile as the output intent, required for accurate conversion to CMYK
 'cmykIccProfile': { 'uri': "URL/to/ICC/profile" },
 # Not necessary to set in this case (overridden by output intent), but recommended
 'targetColorSpace': PDFreactor.ColorSpace.CMYK,
 # Enable conversion of RGB colors and images to CMYK
 'conversionEnabled' True
}

Python

The required output intent
config['outputIntent'] = {
 identifier: "ICC profile identifier",
 url: "URL/to/ICC/profile"
}
Color space conversion settings
config['colorSpaceSettings'] = {
 # The same profile as the output intent, required for accurate conversion to CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 # Not necessary to set in this case (overridden by output intent), but recommended
 targetColorSpace: PDFreactor::ColorSpace::CMYK,
 # Enable conversion of RGB colors and images to CMYK
 conversionEnabled True
}

Ruby

{
 "outputIntent": {
 "identifier": "ICC profile identifier",
 "url": "URL/to/ICC/profile"
 },
 "colorSpaceSettings": {
 "cmykIccProfile": { "uri": "URL/to/ICC/profile" },
 "targetColorSpace": "CMYK",
 "conversionEnabled": true
}

REST

// (No output intent required)
// Color space conversion settings
config.setColorSpaceSettings(new ColorSpaceSettings()
 // When converting to RGB the profile is used for accurate conversion from CMYK
 .setCmykIccProfile(new Resource().setUri("URL/to/ICC/profile"))
 // Not necessary to set in this case (default), but recommended
 .setTargetColorSpace(ColorSpace.RGB)
 // Enable conversion of CMYK colors and images to RGB
 .setConversionEnabled(true));
// Reduce image sizes by resampling and compression
config.setUserStyleSheets(new Resource().setContent(
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 "* { -ro-image-resampling: 200dpi; "
 // recompress all images to JPEG with a quality of 90%
 + "-ro-image-recompression: jpeg(90%) }"));

Java

www.pdfreactor.com

G.94 Creating web version

493

// (No output intent required)
// Color space conversion settings
config.ColorSpaceSettings = new ColorSpaceSettings {
 // When converting to RGB the profile is used for accurate conversion from CMYK
 CmykIccProfile = new Resource() { Uri = "URL/to/ICC/profile" },
 // Not necessary to set in this case (default), but recommended
 TargetColorSpace = ColorSpace.RGB,
 // Enable conversion of CMYK colors and images to RGB
 ConversionEnabled = true
};
// Reduce image sizes by resampling and compression
config.UserStyleSheets = new List<Resource>
{
 new Resource
 {
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 Content = "* { -ro-image-resampling: 200dpi; -ro-image-recompression:
jpeg(90%) }"
 }
};

C#

// (No output intent required)
// Color space conversion settings
config.colorSpaceSettings = {
 // When converting to RGB the profile is used for accurate conversion from CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (default), but recommended
 targetColorSpace: PDFreactor.ColorSpace.RGB,
 // Enable conversion of CMYK colors and images to RGB
 conversionEnabled: true
};
// Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 content: "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}];

JavaScript

// (No output intent required)
// Color space conversion settings
config.colorSpaceSettings = {
 // When converting to RGB the profile is used for accurate conversion from CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 // Not necessary to set in this case (default), but recommended
 targetColorSpace: PDFreactor.ColorSpace.RGB,
 // Enable conversion of CMYK colors and images to RGB
 conversionEnabled: true
};
// Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 content: "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}];

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

494

// (No output intent required)
// Color space conversion settings
$config["colorSpaceSettings"] = array(
 // When converting to RGB the profile is used for accurate conversion from CMYK
 "cmykIccProfile" => array("uri" => "URL/to/ICC/profile"),
 // Not necessary to set in this case (default), but recommended
 "targetColorSpace" => ColorSpace::RGB,
 // Enable conversion of CMYK colors and images to RGB
 "conversionEnabled" => true
);
// Reduce image sizes by resampling and compression
$config["userStyleSheets"] = array(
 array(
 // downsample images that (in the final layout)
 // have a resolution of more then 200dpi
 // recompress all images to JPEG with a quality of 90%
 "content" => "* { -ro-image-resampling: 200dpi; -ro-image-recompression:
jpeg(90%) }"
)
}];

PHP

(No output intent required)
Color space conversion settings
config['colorSpaceSettings'] = {
 # When converting to RGB the profile is used for accurate conversion from CMYK
 'cmykIccProfile': { 'uri': "URL/to/ICC/profile" },
 # Not necessary to set in this case (default), but recommended
 'targetColorSpace': PDFreactor.ColorSpace.RGB,
 # Enable conversion of CMYK colors and images to RGB
 'conversionEnabled': True
}
Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 # downsample images that (in the final layout)
 # have a resolution of more then 200dpi
 # recompress all images to JPEG with a quality of 90%
 'content': "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}]

Python

(No output intent required)
Color space conversion settings
config.colorSpaceSettings = {
 # When converting to RGB the profile is used for accurate conversion from CMYK
 cmykIccProfile: { uri: "URL/to/ICC/profile" },
 # Not necessary to set in this case (default), but recommended
 targetColorSpace: PDFreactor::ColorSpace::RGB,
 # Enable conversion of CMYK colors and images to RGB
 conversionEnabled: true
}
Reduce image sizes by resampling and compression
config.userStyleSheets = [{
 # downsample images that (in the final layout)
 # have a resolution of more then 200dpi
 # recompress all images to JPEG with a quality of 90%
 content: "* { -ro-image-resampling: 200dpi; -ro-image-recompression: jpeg(90%) }"
}]

Ruby

www.pdfreactor.com

G.94 Creating web version

495

G.95 Print dialog prompt
Back to main chapter (p. 100)

G.96 Disabling automatic structural optimization
Back to main chapter (p. 101)

{
 "colorSpaceSettings": {
 "cmykIccProfile": { "uri": "URL/to/ICC/profile" },
 "targetColorSpace": "RGB",
 "conversionEnabled": true
 },
 "userStyleSheets": [{
 "content": "* { -ro-image-resampling: 200dpi; -ro-image-recompression:
jpeg(90%) }"
 }
}

REST

config.setPrintDialogPrompt(true); Java

config.PrintDialogPrompt = true; C#

config.printDialogPrompt = true; JavaScript

config.printDialogPrompt = true; Node.js

$config["printDialogPrompt"] = true; PHP

config['printDialogPrompt'] = True Python

config['printDialogPrompt'] = true Ruby

{ "printDialogPrompt": true } REST

config.setDisablePdfStructureOptimization(true); Java

config.DisablePdfStructureOptimization = true; C#

config.disablePdfStructureOptimization = true; JavaScript

config.disablePdfStructureOptimization = true; Node.js

$config["disablePdfStructureOptimization"] = true; PHP

config['disablePdfStructureOptimization'] = True Python

config['disablePdfStructureOptimization'] = true Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

496

G.97 Encryption
Back to main chapter (p. 101)

G.98 User and owner passwords
Back to main chapter (p. 101)

{ "disablePdfStructureOptimization": true } REST

EncryptionSettings encryptionSettings = new EncryptionSettings();
encryptionSettings.setType(Encryption.AES_256);
config.setEncryptionSettings(encryptionSettings);

Java

config.encryptionSettings = new EncryptionSettings
{
 Type = Encryption.AES_256
};

C#

config.encryptionSettings {
 mode: PDFreactor.Encryption.AES_256
};

JavaScript

config.encryptionSettings {
 mode: PDFreactor.Encryption.AES_256
};

Node.js

$config["encryptionSettings"] = array(
 "type" => Encryption::AES_256
);

PHP

config['encryptionSettings'] = {
 'mode': PDFreactor.Encryption.AES_256
}

Python

config['encryptionSettings'] = {
 mode: PDFreactor::Encryption::AES_256
}

Ruby

{ "encryptionSettings": {
 "type": "AES_256"
 }
}

REST

EncryptionSettings encryptionSettings = new EncryptionSettings();
encryptionSettings.setUserPassword("upasswd");
encryptionSettings.setOwnerPassword("opasswd");
config.setEncryptionSettings(encryptionSettings);

Java

config.encryptionSettings = new EncryptionSettings
{
 UserPassword = "upasswd",
 OwnerPassword = "opasswd"
};

C#

www.pdfreactor.com

G.97 Encryption

497

G.99 Viewer preferences
Back to main chapter (p. 102)

config.encryptionSettings {
 userPassword: "upasswd",
 ownerPassword: "opasswd"
};

JavaScript

config.encryptionSettings {
 userPassword: "upasswd",
 ownerPassword: "opasswd"
};

Node.js

$config["encryptionSettings"] = array(
 "userPassword" => "upasswd",
 "ownerPassword" => "opasswd"
);

PHP

config['encryptionSettings'] = {
 'userPassword': "upasswd",
 'ownerPassword': "opasswd"
}

Python

config['encryptionSettings'] = {
 userPassword: "userPassword",
 ownerPassword: "ownerPassword"
}

Ruby

{ "encryptionSettings": {
 "userPassword": "upasswd",
 "ownerPassword": "opasswd"
 }
}

REST

config.setViewerPreferences(ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE,
 ViewerPreferences.DISPLAY_DOC_TITLE);

Java

config.ViewerPreferences = new List<ViewerPreferences>
{
 ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE,
 ViewerPreferences.DISPLAY_DOC_TITLE
};

C#

config.viewerPreferences = [
 PDFreactor.ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor.ViewerPreferences.DISPLAY_DOC_TITLE
];

JavaScript

config.viewerPreferences = [
 PDFreactor.ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor.ViewerPreferences.DISPLAY_DOC_TITLE
];

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

498

G.100 Merging documents
Back to main chapter (p. 104)

$config["viewerPreferences"] = new array(
 ViewerPreferences::PAGE_LAYOUT_SINGLE_PAGE
 ViewerPreferences::DISPLAY_DOC_TITLE
);

PHP

config['viewerPreferences'] = [
 PDFreactor.ViewerPreferences.PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor.ViewerPreferences.DISPLAY_DOC_TITLE
]

Python

config['viewerPreferences'] = [
 PDFreactor::ViewerPreferences::PAGE_LAYOUT_SINGLE_PAGE
 PDFreactor::ViewerPreferences::DISPLAY_DOC_TITLE
]

Ruby

{ "viewerPreferences": ["PAGE_LAYOUT_SINGLE_PAGE", "DISPLAY_DOC_TITLE"]} REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings.setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid1.pdf"),
 new Resource().setData(pdfBytes));
config.setMergeSettings(mergeSettings);

Java

config.mergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/overlaid1.pdf" },
 new Resource { Data = pdfBytes }
 }
};

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid1.pdf" },
 { data: pdfBytesAsBase64 }
]
};

JavaScript

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid1.pdf" },
 { data: pdfBytesAsBase64 }
]
};

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/overlaid1.pdf"),
 array("data" => pdfBytesAsBase64)
]
);

PHP

www.pdfreactor.com

G.100 Merging documents

499

G.101 Appending documents
Back to main chapter (p. 104)

config['mergeSettings'] = {
 'mergeDocuments': [
 { 'uri': "https://www.myserver.com/overlaid1.pdf" },
 { 'data': pdfBytesAsBase64 }
]
}

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid1.pdf" },
 { data: pdfBytesAsBase64 }
]
}

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid1.pdf" },
 { "data": pdfBytesAsBase64 }
]
 }
}

REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/appendDoc.pdf"))
 .setMode(MergeMode.APPEND);
config.setMergeSettings(mergeSettings);

Java

config.mergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/appendDoc.pdf" }
 },
 Mode = MergeMode.APPEND
};

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/appendDoc.pdf" }
],
 mode: PDFreactor.MergeMode.APPEND
};

JavaScript

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/appendDoc.pdf" }
],
 mode: PDFreactor.MergeMode.APPEND
};

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

500

G.102 Arranging merged documents
Back to main chapter (p. 105)

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/appendDoc.pdf"")
],
 "mode" => MergeMode::APPEND
);

PHP

config['mergeSettings'] = {
 'mergeDocuments': [
 { 'uri': "https://www.myserver.com/appendDoc.pdf" }
],
 'mode': PDFreactor.MergeMode.APPEND
}

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/appendDoc.pdf" }
] ,
 mode: PDFreactor::MergeMode::APPEND
}

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/appendDoc.pdf" }
],
 "mode": "APPEND"
 }
}

REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/insert1.pdf"),
 new Resource().setUri("https://www.myserver.com/insert2.pdf"))
 .setMode(MergeMode.ARRANGE);
config.setMergeSettings(mergeSettings);
config.setPageOrder("1,1:1,2..-1");

Java

config.MergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/insert1.pdf" },
 new Resource { Uri = "https://www.myserver.com/insert2.pdf" }
 },
 Mode = MergeMode.ARRANGE
};
config.PageOrder = "1,1:1,2..-1";

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
],
 mode: PDFreactor.MergeMode.ARRANGE
}
config.pageOrder = "1,1:1,2..-1";

JavaScript

www.pdfreactor.com

G.102 Arranging merged documents

501

G.103 Overlaying documents
Back to main chapter (p. 105)

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
],
 mode: PDFreactor.MergeMode.ARRANGE
}
config.pageOrder = "1,1:1,2..-1";

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/insert1.pdf"),
 array("uri" => "https://www.myserver.com/insert2.pdf")
],
 "mode" => MergeMode::ARRANGE
);
$config["pageOrder"] = "1,1:1,2..-1";

PHP

config['mergeSettings'] = {
 'mergeDocuments' = [
 { 'uri': "https://www.myserver.com/insert1.pdf" },
 { 'uri': "https://www.myserver.com/insert2.pdf" }
],
 'mode': PDFreactor.MergeMode.ARRANGE
}
config['pageOrder'] = "1,1:1,2..-1"

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
],
 mode: PDFreactor::MergeMode::ARRANGE
}
config['pageOrder'] = "1,1:1,2..-1"

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/insert1.pdf" },
 { "uri": "https://www.myserver.com/insert2.pdf" }
],
 "mode": "ARRANGE"
 }
 "pageOrder": "1,1:1,2..-1"
}

REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY);
config.setMergeSettings(mergeSettings);

Java

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

502

config.mergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/overlaid.pdf" }
 },
 Mode = MergeMode.OVERLAY
};

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY
};

JavaScript

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY
};

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/overlaid.pdf")
],
 "mode" => MergeMode::OVERLAY
);

PHP

config['mergeSettings'] = {
 'mergeDocuments': [
 { 'uri': "https://www.myserver.com/overlaid.pdf" }
],
 'mode': PDFreactor.MergeMode.OVERLAY
}

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor::MergeMode::OVERLAY
}

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid.pdf" }
],
 "mode": "OVERLAY"
 }
}

REST

www.pdfreactor.com

G.103 Overlaying documents

503

G.104 Repeating merged documents
Back to main chapter (p. 105)

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY)
 .setOverlayRepeat(OverlayRepeat.ALL_PAGES);
config.setMergeSettings(mergeSettings);

Java

config.mergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/overlaid.pdf" }
 },
 Mode = MergeMode.OVERLAY,
 OverlayRepeat = OverlayRepeat.ALL_PAGES
};

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY,
 overlayRepeat: PDFreactor.OverlayRepeat.ALL_PAGES
};

JavaScript

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY,
 overlayRepeat: PDFreactor.OverlayRepeat.ALL_PAGES
};

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/overlaid.pdf"")
],
 "mode" => MergeMode::OVERLAY,
 "overlayRepeat" => OverlayRepeat::ALL_PAGES
);

PHP

config['mergeSettings'] = {
 'mergeDocuments': [
 { 'uri': "https://www.myserver.com/overlaid.pdf" }
],
 'mode': PDFreactor.MergeMode.OVERLAY,
 'overlayRepeat': PDFreactor.OverlayRepeat.ALL_PAGES
}

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor::MergeMode::OVERLAY,
 overlayRepeat: PDFreactor::OverlayRepeat::ALL_PAGES
}

Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

504

G.105 Configuring the aspect ratio for overlay pages
Back to main chapter (p. 106)

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid.pdf" }
],
 "mode": "OVERLAY",
 "overlayRepeat": "ALL_PAGES"
 }
}

REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY)
 .setOverlayFit(OverlayFit.COVER);
config.setMergeSettings(mergeSettings);

Java

config.mergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/overlaid.pdf" }
 },
 Mode = MergeMode.OVERLAY,
 OverlayFit = OverlayFit.COVER
};

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY,
 overlayFit: PDFreactor.OverlayFit.COVER
};

JavaScript

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY,
 overlayFit: PDFreactor.OverlayFit.COVER
};

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/overlaid.pdf"")
],
 "mode" => MergeMode::OVERLAY,
 "overlayFit" => OverlayFit::COVER
);

PHP

www.pdfreactor.com

G.105 Configuring the aspect ratio for overlay pages

505

G.106 Configuring the aspect ratio for overlay pages
Back to main chapter (p. 106)

config['mergeSettings'] = {
 'mergeDocuments': [
 { 'uri': "https://www.myserver.com/overlaid.pdf" }
],
 'mode': PDFreactor.MergeMode.OVERLAY,
 'overlayFit': PDFreactor.OverlayFit.COVER
}

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor::MergeMode::OVERLAY,
 overlayFit: PDFreactor::OverlayFit::COVER
}

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid.pdf" }
],
 "mode": "OVERLAY",
 "overlayFit": "COVER"
 }
}

REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/overlaid.pdf"))
 .setMode(MergeMode.OVERLAY)
 .setDisableOverlayAnnotations(true);
config.setMergeSettings(mergeSettings);

Java

config.mergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/overlaid.pdf" }
 },
 Mode = MergeMode.OVERLAY,
 DisableOverlayAnnotations = true
};

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY,
 disableOverlayAnnotations: true
};

JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

506

G.107 Signing PDFs
Back to main chapter (p. 106)

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor.MergeMode.OVERLAY,
 disableOverlayAnnotations: true
};

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/overlaid.pdf"")
],
 "mode" => MergeMode::OVERLAY,
 "disableOverlayAnnotations" => true
);

PHP

config['mergeSettings'] = {
 'mergeDocuments': [
 { 'uri': "https://www.myserver.com/overlaid.pdf" }
],
 'mode': PDFreactor.MergeMode.OVERLAY,
 'disableOverlayAnnotations': true
}

Python

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/overlaid.pdf" }
],
 mode: PDFreactor::MergeMode::OVERLAY,
 disableOverlayAnnotations: true
}

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/overlaid.pdf" }
],
 "mode": "OVERLAY",
 "disableOverlayAnnotations": true
 }
}

REST

config.setSignPDF(
new SignPDF()
 .setKeyAlias("keyAlias")
 .setKeystorePassword("keyStorePassword")
 .setKeystoreType(KeystoreType.JKS)
 .setKeystoreURL("http://myServer/Keystore.jks")
 .setSigningMode(SigningMode.SELF_SIGNED));

Java

config.SignPDF = new SignPDF
{
 KeyAlias = "keyAlias",
 KeystorePassword = "keyStorePassword",
 KeystoreType = KeystoreType.JKS,
 KeystoreURL = "http://myServer/Keystore.jks",
 SigningMode = SigningMode.SELF_SIGNED
};

C#

www.pdfreactor.com

G.107 Signing PDFs

507

G.108 Disabling font embedding
Back to main chapter (p. 107)

config.signPDF = {
 keyAlias: "keyAlias",
 keystorePassword: "keyStorePassword",
 keystoreType: PDFreactor.KeystoreType.JKS,
 keystoreURL: "http://myServer/Keystore.jks",
 signingMode: PDFreactor.SigningMode.SELF_SIGNED
};

JavaScript

config.signPDF = {
 keyAlias: "keyAlias",
 keystorePassword: "keyStorePassword",
 keystoreType: PDFreactor.KeystoreType.JKS,
 keystoreURL: "http://myServer/Keystore.jks",
 signingMode: PDFreactor.SigningMode.SELF_SIGNED
};

Node.js

$config["signPDF"] = array(
 "keyAlias" => "keyAlias",
 "keystorePassword" => "keyStorePassword",
 "keystoreType" => KeystoreType::JKS,
 "keystoreURL" => "http://myServer/Keystore.jks",
 "signingMode" => SigningMode::SELF_SIGNED
);

PHP

config['signPDF'] = {
 'keyAlias': "keyAlias",
 'keystorePassword': "keyStorePassword",
 'keystoreType': PDFreactor.KeystoreType.JKS,
 'keystoreURL': "http://myServer/Keystore.jks",
 'signingMode': PDFreactor.SigningMode.SELF_SIGNED
}

Python

config['signPDF'] = {
 keyAlias: "keyAlias",
 keystorePassword: "keyStorePassword",
 keystoreType: PDFreactor::KeystoreType::JKS,
 keystoreURL: "http://myServer/Keystore.jks",
 signingMode: PDFreactor::SigningMode::SELF_SIGNED
}

Ruby

{ "signPDF": {
 "keyAlias": "keyAlias",
 "keystorePassword": "keyStorePassword",
 "keystoreType": PDFreactor.KeystoreType.JKS,
 "keystoreURL": "http://myServer/Keystore.jks",
 "signingMode": PDFreactor.SigningMode.SELF_SIGNED
}}

REST

config.setDisableFontEmbedding(true); Java

config.DisableFontEmbedding = true; C#

config.disableFontEmbedding = true; JavaScript

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

508

G.109 Overprint
Back to main chapter (p. 107)

G.110 Adding attachments
Back to main chapter (p. 108)

config.disableFontEmbedding = true; Node.js

$config["disableFontEmbedding"] = true; PHP

config['disableFontEmbedding'] = True Python

config['disableFontEmbedding'] = true Ruby

{ "disableFontEmbedding": true } REST

config.setAddOverprint(true); Java

config.AddOverprint = true; C#

config.addOverprint = true; JavaScript

config.addOverprint = true; Node.js

$config["addOverprint"] = true; PHP

config['addOverprint'] = True Python

config['addOverprint'] = true Ruby

{ "addOverprint": true } REST

config.setAddAttachments(true); Java

config.AddAttachments = true; C#

config.addAttachments = true; JavaScript

config.addAttachments = true; Node.js

$config["addAttachments"] = true; PHP

config['addAttachments'] = True Python

config['addAttachments'] = true Ruby

www.pdfreactor.com

G.109 Overprint

509

G.111 Attachments
Back to main chapter (p. 109)

{ "addAttachments": true } REST

config.setAttachments(
 new Attachment()
 .setData("sample attachment text".getBytes())
 .setName("sample.txt")
 .setDescription("a dynamically created attachment containing text"),
 new Attachment()
 .setUrl("../resources/0412/report.doc")
 .setName("report-2012-04.doc")
 .setDescription("Report for April of 2012"));

Java

config.Attachments = new List<Attachment>
{
 new Attachment
 {
 Data = sampleAttachmentTextBytes
 Name = "sample.txt"
 Description = "a dynamically created attachment containing text"
 },
 new Attachment
 {
 Url = "../resources/0412/report.doc",
 Name = "report-2012-04.doc",
 Description = "Report for April of 2012"
 }
};

C#

config.attachments = [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
];

JavaScript

config.attachments = [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
];

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

510

G.112 PDF script actions
Back to main chapter (p. 110)

$config["attachments"] = array(
 array(
 "data" => sampleAttachmentTextBytesAsBase64
 "name" => "sample.txt"
 "description" => "a dynamically created attachment containing text"
),
 array(
 "url" => "../resources/0412/report.doc",
 "name" => "report-2012-04.doc",
 "description" => "Report for April of 2012"
)
);

PHP

config['attachments'] = [
 {
 'data': sampleAttachmentTextBytesAsBase64
 'name': "sample.txt"
 'description': "a dynamically created attachment containing text"
 },
 {
 'url': "../resources/0412/report.doc",
 'name': "report-2012-04.doc",
 'description': "Report for April of 2012"
 }
]

Python

config['attachments'] = [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
]

Ruby

{ "attachments": [
 {
 data: sampleAttachmentTextBytesAsBase64
 name: "sample.txt"
 description: "a dynamically created attachment containing text"
 },
 {
 url: "../resources/0412/report.doc",
 name: "report-2012-04.doc",
 description: "Report for April of 2012"
 }
]}

REST

config.setPdfScriptAction(new PdfScriptAction()
 .setScript("app.alert('hello');")
 .setTriggerEvent(PdfScriptTriggerEvent.OPEN));

Java

www.pdfreactor.com

G.112 PDF script actions

511

G.113 Adding preview images
Back to main chapter (p. 110)

config.PdfScriptAction = new PdfScriptAction
{
 Script = "app.alert('hello');",
 TriggerEvent = PdfScriptTriggerEvent.OPEN
};

C#

config.pdfScriptAction = {
 script: "app.alert('hello');",
 triggerEvent: PDFreactor.PdfScriptTriggerEvent.OPEN
};

JavaScript

config.pdfScriptAction = {
 script: "app.alert('hello');",
 triggerEvent: PDFreactor.PdfScriptTriggerEvent.OPEN
};

Node.js

$config["pdfScriptAction"] = array(
 "script" => "app.alert('hello');",
 "triggerEvent" => PdfScriptTriggerEvent::OPEN
);

PHP

config['pdfScriptAction'] = {
 'script': "app.alert('hello');",
 'triggerEvent': PDFreactor.PdfScriptTriggerEvent.OPEN
}

Python

config['pdfScriptAction'] = {
 script: "app.alert('hello');",
 triggerEvent: PDFreactor::PdfScriptTriggerEvent::OPEN
}

Ruby

{ "pdfScriptAction": {
 "script": "app.alert('hello');",
 "triggerEvent": "OPEN"
}}

REST

config.setAddPreviewImages(true); Java

config.AddPreviewImages = true; C#

config.addPreviewImages = true; JavaScript

config.addPreviewImages = true; Node.js

$config["addPreviewImages"] = true; PHP

config['addPreviewImages'] = True Python

config['addPreviewImages'] = true Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

512

G.114 Attaching a custom XMP
Back to main chapter (p. 110)

G.115 Image output
Back to main chapter (p. 111)

{ "addPreviewImages": true } REST

config.setXmp(new Xmp()
 .setPriority(XmpPriority.HIGH)
 .setUri("http://cdn/myXmp.xml"));

Java

config.Xmp = new Xmp {
 Priority = XmpPriority.HIGH,
 Uri = "http://cdn/myXmp.xml"
};

C#

config.xmp = {
 priority: PDFreactor.XmpPriority.HIGH,
 uri: "http://cdn/myXmp.xml"
};

JavaScript

config.xmp = {
 priority: PDFreactor.XmpPriority.HIGH,
 uri: "http://cdn/myXmp.xml"
};

Node.js

$config["xmp"] = array(
 "priority" => XmpPriority::HIGH,
 "uri" => "http://cdn/myXmp.xml"
);

PHP

config['xmp'] = {
 'priority': PDFreactor.XmpPriority.HIGH,
 'uri': 'http://cdn/myXmp.xml'
}

Python

config['xmp'] = {
 priority: PDFreactor::XmpPriority::HIGH,
 uri: 'http://cdn/myXmp.xml'
}

Ruby

{ "xmp": {
 "priority": "HIGH",
 "uri": "http://cdn/myXmp.xml"
}}

REST

config.setOutputFormat(new OutputFormat()
 .setType(OutputType.PNG)
 .setWidth(512)
 .setHeight(-1));

Java

www.pdfreactor.com

G.114 Attaching a custom XMP

513

G.116 Page order
Back to main chapter (p. 111)

config.OutputFormat = new OutputFormat {
 Type = OutputType.PNG,
 Width = 512,
 Height = -1
};

C#

config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1
};

JavaScript

config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1
};

Node.js

$config["outputFormat"] = array(
 "type" => OutputType::PNG,
 "width" => 512,
 "height" => -1
);

PHP

config['outputFormat'] = {
 'type': PDFreactor.OutputType.PNG,
 'width': 512,
 'height': -1
}

Python

config['outputFormat'] = {
 type: PDFreactor::OutputType::PNG,
 width: 512,
 height: -1
}

Ruby

{ "outputFormat": {
 "type": "PNG",
 "width": 512,
 "height": -1
}}

REST

config.setPageOrder("5"); Java

config.PageOrder = "5"; C#

config.pageOrder = "5"; JavaScript

config.pageOrder = "5"; Node.js

$config["pageOrder"] = "5"; PHP

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

514

G.117 Multi-image output
Back to main chapter (p. 111)

config['pageOrder'] = "5" Python

config['pageOrder'] = "5" Ruby

{ "pageOrder": "5" } REST

config.setOutputFormat(new OutputFormat()
 .setType(OutputType.PNG)
 .setWidth(512)
 .setHeight(-1)
 .setMultiImage(true));

Java

config.OutputFormat = new OutputFormat {
 Type = OutputType.PNG,
 Width = 512,
 Height = -1,
 MultiImage = true
};

C#

config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1,
 multiImage: true
};

JavaScript

config.outputFormat = {
 type: PDFreactor.OutputType.PNG,
 width: 512,
 height: -1,
 multiImage: true
};

Node.js

$config["outputFormat"] = array(
 "type" => OutputType::PNG,
 "width" => 512,
 "height" => -1,
 "multiImage" => true
);

PHP

config['outputFormat'] = {
 'type': PDFreactor.OutputType.PNG,
 'width': 512,
 'height': -1,
 'multiImage': True
}

Python

config['outputFormat'] = {
 type: PDFreactor::OutputType::PNG,
 width: 512,
 height: -1,
 multiImage: true
}

Ruby

www.pdfreactor.com

G.117 Multi-image output

515

G.118 Continuous output
Back to main chapter (p. 112)

G.119 Forcing grayscale image output
Back to main chapter (p. 112)

{ "outputFormat": {
 "type": "PNG",
 "width": 512,
 "height": -1,
 "multiImage": true
}}

REST

config.setContinuousOutput(new ContinuousOutput()
 .setWidth(1024)
 .setHeight(768));

Java

config.ContinuousOutput = new ContinuousOutput {
 Width = 1024,
 Height = 768
};

C#

config.continuousOutput = {
 width: 1024,
 height: 768
};

JavaScript

config.continuousOutput = {
 width: 1024,
 height: 768
};

Node.js

$config["continuousOutput"] = array(
 "width" => 1024,
 "height" => 768
);

PHP

config['continuousOutput'] = {
 'width': 1024,
 'height': 768
}

Python

config['continuousOutput'] = {
 width: 1024,
 height: 768
}

Ruby

{ "continuousOutput": {
 "width": 1024,
 "height": 768
}}

REST

config.setForceGrayscaleImage(true); Java

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

516

G.120 Color space conversion of output images to CMYK
Back to main chapter (p. 112)

config.ForceGrayscaleImage = true; C#

config.forceGrayscaleImage = true; JavaScript

config.forceGrayscaleImage = true; Node.js

$config["forceGrayscaleImage"] = true; PHP

config['forceGrayscaleImage'] = True Python

config['forceGrayscaleImage'] = true Ruby

{ "forceGrayscaleImage": true } REST

config.setColorSpaceSettings(new ColorSpaceSettings()
 .setConversionEnabled(true)
 .setTargetColorSpace(ColorSpace.CMYK)
 .setCmykIccProfile(new Resource().setUri("URL/to/optional/ICC/profile")));

Java

config.ColorSpaceSettings = new ColorSpaceSettings
{
 ConversionEnabled = true,
 TargetColorSpace = ColorSpace.CMYK,
 CmykIccProfile = new Resource() { Uri = "URL/to/optional/ICC/profile" }
};

C#

config.colorSpaceSettings = {
 conversionEnabled: true,
 targetColorSpace: PDFreactor.ColorSpace.CMYK,
 cmykIccProfile: { uri: "URL/to/optional/ICC/profile" }
};

JavaScript

config.colorSpaceSettings = {
 conversionEnabled: true,
 targetColorSpace: PDFreactor.ColorSpace.CMYK,
 cmykIccProfile: { uri: "URL/to/optional/ICC/profile" }
};

Node.js

$config["colorSpaceSettings"] = array(
 "conversionEnabled" => true,
 "targetColorSpace" => ColorSpace::CMYK,
 "cmykIccProfile" => array("uri" => "URL/to/optional/ICC/profile")
);

PHP

config['colorSpaceSettings'] = {
 'conversionEnabled' True,
 'targetColorSpace': PDFreactor.ColorSpace.CMYK,
 'cmykIccProfile': { 'uri': "URL/to/optional/ICC/profile" }
}

Python

www.pdfreactor.com

G.120 Color space conversion of output images to CMYK

517

G.121 Shrink-to-fit
Back to main chapter (p. 155)

G.122 Custom page order
Back to main chapter (p. 157)

config['colorSpaceSettings'] = {
 conversionEnabled True,
 targetColorSpace: PDFreactor::ColorSpace::CMYK,
 cmykIccProfile: { uri: "URL/to/optional/ICC/profile" }
}

Ruby

{
 "colorSpaceSettings": {
 "conversionEnabled": true,
 "targetColorSpace": "CMYK",
 "cmykIccProfile": { "uri": "URL/to/optional/ICC/profile" }
}

REST

config.setPixelsPerInchShrinkToFit(true); Java

config.PixelsPerInchShrinkToFit = true; C#

config.pixelsPerInchShrinkToFit = true; JavaScript

config.pixelsPerInchShrinkToFit = true; Node.js

$config["pixelsPerInchShrinkToFit"] = true; PHP

config['pixelsPerInchShrinkToFit'] = True Python

config['pixelsPerInchShrinkToFit'] = true Ruby

{ "pixelsPerInchShrinkToFit": true } REST

config.setPageOrder("2,5,6*2,8..10,-1,-2"); Java

config.PageOrder = "2,5,6*2,8..10,-1,-2"; C#

config.pageOrder = "2,5,6*2,8..10,-1,-2"; JavaScript

config.pageOrder = "2,5,6*2,8..10,-1,-2"; Node.js

$config["pageOrder"] = "2,5,6*2,8..10,-1,-2"; PHP

config['pageOrder'] = "2,5,6*2,8..10,-1,-2" Python

config['pageOrder'] = "2,5,6*2,8..10,-1,-2" Ruby

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

518

G.123 Arranging documents
Back to main chapter (p. 158)

{ "pageOrder": "2,5,6*2,8..10,-1,-2" } REST

MergeSettings mergeSettings = new MergeSettings();
mergeSettings
 .setMergeDocuments(
 new Resource().setUri("https://www.myserver.com/insert1.pdf"),
 new Resource().setUri("https://www.myserver.com/insert2.pdf"))
 .setMode(MergeMode.ARRANGE);
config.setMergeSettings(mergeSettings);
config.setPageOrder("1,1:1,2..-1");

Java

config.MergeSettings = new MergeSettings
{
 MergeDocuments = new List<Resource>
 {
 new Resource { Uri = "https://www.myserver.com/insert1.pdf" },
 new Resource { Uri = "https://www.myserver.com/insert2.pdf" }
 },
 Mode = MergeMode.ARRANGE
};
config.PageOrder = "1,1:1,2..-1";

C#

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
],
 mode: PDFreactor.MergeMode.ARRANGE
}
config.pageOrder = "1,1:1,2..-1";

JavaScript

config.mergeSettings = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
],
 mode: PDFreactor.MergeMode.ARRANGE
}
config.pageOrder = "1,1:1,2..-1";

Node.js

$config["mergeSettings"] = array(
 "mergeDocuments" => [
 array("uri" => "https://www.myserver.com/insert1.pdf"),
 array("uri" => "https://www.myserver.com/insert2.pdf")
],
 "mode" => MergeMode::ARRANGE
);
$config["pageOrder"] = "1,1:1,2..-1";

PHP

config['mergeSettings'] = {
 'mergeDocuments' = [
 { 'uri': "https://www.myserver.com/insert1.pdf" },
 { 'uri': "https://www.myserver.com/insert2.pdf" }
],
 'mode': PDFreactor.MergeMode.ARRANGE
}
config['pageOrder'] = "1,1:1,2..-1"

Python

www.pdfreactor.com

G.123 Arranging documents

519

G.124 Pages per sheet
Back to main chapter (p. 159)

config['mergeSettings'] = {
 mergeDocuments: [
 { uri: "https://www.myserver.com/insert1.pdf" },
 { uri: "https://www.myserver.com/insert2.pdf" }
],
 mode: PDFreactor::MergeMode::ARRANGE
}
config['pageOrder'] = "1,1:1,2..-1"

Ruby

{ "mergeSettings": {
 "mergeDocuments": [
 { "uri": "https://www.myserver.com/insert1.pdf" },
 { "uri": "https://www.myserver.com/insert2.pdf" }
],
 "mode": "ARRANGE"
 }
 "pageOrder": "1,1:1,2..-1"
}

REST

config.setPagesPerSheetProperties(new PagesPerSheetProperties()
 .setCols(2)
 .setRows(2)
 .setSheetSize("A4 landscape")
 .setSheetMargin("2.5cm")
 .setSpacing("2cm")
 .setDirection(PagesPerSheetDirection.RIGHT_UP));

Java

config.PagesPerSheetProperties = new PagesPerSheetProperties
{
 Cols = 2,
 Rows = 2,
 SheetSize = "A4 landscape",
 SheetMargin = "2,5cm",
 Spacing = "2cm",
 Direction = PagesPerSheetDirection.RIGHT_UP
};

C#

config.pagesPerSheetProperties = {
 cols: 2,
 rows: 2,
 sheetSize: "A4 landscape",
 sheetMargin: "2,5cm",
 spacing: "2cm",
 direction: PDFreactor.PagesPerSheetDirection.RIGHT_UP
};

JavaScript

config.pagesPerSheetProperties = {
 cols: 2,
 rows: 2,
 sheetSize: "A4 landscape",
 sheetMargin: "2,5cm",
 spacing: "2cm",
 direction: PDFreactor.PagesPerSheetDirection.RIGHT_UP
};

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

520

G.125 Booklet
Back to main chapter (p. 160)

$config["pagesPerSheetProperties"] = array(
 "cols" => 2,
 "rows" => 2,
 "sheetSize" => "A4 landscape",
 "sheetMargin": "2,5cm",
 "spacing" => "2cm",
 "direction" => PagesPerSheetDirection::RIGHT_UP
);

PHP

config['pagesPerSheetProperties'] = {
 'cols': 2,
 'rows': 2,
 'sheetSize': "A4 landscape",
 'sheetMargin': "2,5cm",
 'spacing': "2cm",
 'direction': PDFreactor.PagesPerSheetDirection.RIGHT_UP
}

Python

config['pagesPerSheetProperties'] = {
 cols: 2,
 rows: 2,
 sheetSize: "A4 landscape",
 sheetMargin: "2,5cm",
 spacing: "2cm",
 direction: PDFreactor::PagesPerSheetDirection::RIGHT_UP
}

Ruby

{ "pagesPerSheetProperties": {
 "cols": 2,
 "rows": 2,
 "sheetSize": "A4 landscape",
 "sheetMargin": "2,5cm",
 "spacing": "2cm",
 "direction": "RIGHT_UP"
}

REST

config.setBookletMode(new BookletMode()
 .setSheetSize("A4 landscape")
 .setSheetMargin("1cm")
 .setRtl(false));

Java

config.BookletMode = new BookletMode
{
 SheetSize = "A4 landscape",
 SheetMargin = "1cm",
 Rtl = false
};

C#

config.bookletMode = {
 sheetSize: "A4 landscape",
 sheetMargin: "1cm",
 rtl: false
};

JavaScript

www.pdfreactor.com

G.125 Booklet

521

G.126 Custom pixels per inch
Back to main chapter (p. 161)

config.bookletMode = {
 sheetSize: "A4 landscape",
 sheetMargin: "1cm",
 rtl: false
};

Node.js

$config["bookletMode"] = array(
 "sheetSize" => "A4 landscape",
 "sheetMargin": "1cm",
 "rtl" => false
);

PHP

config['bookletMode'] = {
 'sheetSize': "A4 landscape",
 'sheetMargin': "1cm",
 'rtl': False
}

Python

config['bookletMode'] = {
 sheetSize: "A4 landscape",
 sheetMargin: "1cm",
 rtl: false
}

Ruby

{ "bookletMode": {
 "sheetSize": "A4 landscape",
 "sheetMargin": "1cm",
 "rtl": false
}

REST

config.setPixelsPerInch(120); Java

config.PixelsPerInch = 120; C#

config.pixelsPerInch = 120; JavaScript

config.pixelsPerInch = 120; Node.js

$config["pixelsPerInch"] = 120; PHP

config['pixelsPerInch'] = 120 Python

config['pixelsPerInch'] = 120 Ruby

{ "pixelsPerInch": 120 } REST

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

522

G.127 Document language
Back to main chapter (p. 161)

G.128 Media types
Back to main chapter (p. 163)

G.129 Media feature values
Back to main chapter (p. 164)

config.setDocumentDefaultLanguage("de-DE"); Java

config.DocumentDefaultLanguage = "de-DE"; C#

config.documentDefaultLanguage = "de-DE"; JavaScript

config.documentDefaultLanguage = "de-DE"; Node.js

$config["documentDefaultLanguage"] = "de-DE"; PHP

config['documentDefaultLanguage'] = "de-DE" Python

config['documentDefaultLanguage'] = "de-DE" Ruby

{ "documentDefaultLanguage": "de-DE" } REST

config.setMediaTypes("screen", "projection", "print"); Java

config.MediaTypes = new List<string> { "screen", "projection", "print" } C#

config.mediaTypes = ["screen", "projection", "print"]; JavaScript

config.mediaTypes = ["screen", "projection", "print"]; Node.js

$config["mediaTypes"] = array("screen", "projection", "print"); PHP

config['mediaTypes'] = ["screen", "projection", "print"] Python

config['mediaTypes'] = ["screen", "projection", "print"] Ruby

{ "mediaTypes": ["screen", "projection", "print"]} REST

config.setMediaFeatureValues(new MediaFeatureValue()
 .setMediaFeature(MediaFeature.DEVICE_WIDTH)
 .setValue("1024px"));

Java

www.pdfreactor.com

G.127 Document language

523

G.130 Enabling Segmentation
Back to main chapter (p. 171)

config.MediaFeatureValues = new MediaFeatureValue
{
 MediaFeature = MediaFeature.DEVICE_WIDTH,
 Value = "1024px"
};

C#

config.mediaFeatureValues = [{
 mediaFeature: PDFreactor.MediaFeature.DEVICE_WIDTH,
 value: "1024px"
}];

JavaScript

config.mediaFeatureValues = [{
 mediaFeature: PDFreactor.MediaFeature.DEVICE_WIDTH,
 value: "1024px"
}];

Node.js

$config["mediaFeatureValues"] = array(
 array(
 "mediaFeature" => MediaFeature::DEVICE_WIDTH,
 "value" => "1024px"
)
);

PHP

config['mediaFeatureValues'] = [{
 'mediaFeature': PDFreactor.MediaFeature.DEVICE_WIDTH,
 'value': "1024px"
}]

Python

config['mediaFeatureValues'] = [{
 mediaFeature: PDFreactor::MediaFeature::DEVICE_WIDTH,
 value: "1024px"
}]

Ruby

{ "mediaFeatureValues": [{
 "mediaFeature": "DEVICE_WIDTH",
 "value": "1024px"
}]}

REST

config.setSegmentationSettings(new SegmentationSettings()
 .setEnabled(true));

Java

config.SegmentationSettings = new SegmentationSettings
{
 Enabled = true
};

C#

config.segmentationSettings = {
 enabled: true
};

JavaScript

config.segmentationSettings = {
 enabled: true
};

Node.js

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

524

G.131 Adding comments
Back to main chapter (p. 172)

G.132 Custom font directories
Back to main chapter (p. 197)

$config["segmentationSettings"] = array(
 "enabled" => true
);

PHP

config['segmentationSettings'] = {
 'enabled': True
}

Python

config['segmentationSettings'] = {
 enabled: true
}

Ruby

{ "segmentationSettings": {
 "enabled": true
}}

REST

config.setAddComments(true); Java

config.AddComments = true; C#

config.addComments = true; JavaScript

config.addComments = true; Node.js

$config["addComments"] = true; PHP

config['addComments'] = True Python

config['addComments'] = true Ruby

{ "addComments": true } REST

Use the fontDirs server parameter (p. 35) to control custom font directories. Java (WS client)

Use the fontDirs server parameter (p. 35) to control custom font directories. C#

Use the fontDirs server parameter (p. 35) to control custom font directories. JavaScript

Use the fontDirs server parameter (p. 35) to control custom font directories. Node.js

Use the fontDirs server parameter (p. 35) to control custom font directories. PHP

Use the fontDirs server parameter (p. 35) to control custom font directories. Python

www.pdfreactor.com

G.131 Adding comments

525

G.133 Custom fonts
Back to main chapter (p. 197)

Use the fontDirs server parameter (p. 35) to control custom font directories. Ruby

Use the fontDirs server parameter (p. 35) to control custom font directories. REST

config.setFonts(
 new Font().setFamily("My Font")
 .setBold(true)
 .setItalic(true)
 .setSource("https://url/to/font.ttf"));

Java

config.Fonts = new List
{
 new Font()
 {
 Family = "My Font"
 Bold = true
 Italic = true
 Source = "https://url/to/font.ttf"
 }
};

C#

config.fonts = [
 {
 family: "My Font",
 bold: true,
 italic: true,
 source: "https://url/to/font.ttf"
 }
];

JavaScript

config.fonts = [
 {
 family: "My Font",
 bold: true,
 italic: true,
 source: "https://url/to/font.ttf"
 }
];

Node.js

$config["fonts"] = array(
 array(
 "family" => "My Font",
 "bold" => true,
 "italic" => true,
 "source" => "https://url/to/font.ttf"
)
);

PHP

config['fonts'] = [
 {
 'family': 'My Font',
 'bold': True,
 'italic': True,
 'source': 'https://url/to/font.ttf'
 }
]

Python

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

526

G.134 Enabling file system font cache
Back to main chapter (p. 198)

G.135 Configuring font cache location
Back to main chapter (p. 198)

config['fonts'] = [
 {
 'family': 'My Font',
 'bold': true,
 'italic': true,
 'source': 'https://url/to/font.ttf'
 }
]

Ruby

{ "fonts": [
 {
 "family": "My Font",
 "bold": true,
 "italic": true,
 "source": "https://url/to/font.ttf"
 }
]}

REST

Use the disableFontCache server parameter (p. 35) to control the file system font cache. Java (WS client)

Use the disableFontCache server parameter (p. 35) to control the file system font cache. C#

Use the disableFontCache server parameter (p. 35) to control the file system font cache. JavaScript

Use the disableFontCache server parameter (p. 35) to control the file system font cache. Node.js

Use the disableFontCache server parameter (p. 35) to control the file system font cache. PHP

Use the disableFontCache server parameter (p. 35) to control the file system font cache. Python

Use the disableFontCache server parameter (p. 35) to control the file system font cache. Ruby

Use the disableFontCache server parameter (p. 35) to control the file system font cache. REST

Use the fontCacheDir server parameter (p. 35) to control the font cache location. Java (WS client)

Use the fontCacheDir server parameter (p. 35) to control the font cache location. C#

Use the fontCacheDir server parameter (p. 35) to control the font cache location. JavaScript

Use the fontCacheDir server parameter (p. 35) to control the font cache location. Node.js

Use the fontCacheDir server parameter (p. 35) to control the font cache location. PHP

Use the fontCacheDir server parameter (p. 35) to control the font cache location. Python

Use the fontCacheDir server parameter (p. 35) to control the font cache location. Ruby

Use the fontCacheDir server parameter (p. 35) to control the font cache location. REST

www.pdfreactor.com

G.134 Enabling file system font cache

527

G.136 Disabling system fonts
Back to main chapter (p. 198)

G.137 Font aliases
Back to main chapter (p. 199)

Use the disableSystemFonts server parameter (p. 35) to control system font usage. Java (WS client)

Use the disableSystemFonts server parameter (p. 35) to control system font usage. C#

Use the disableSystemFonts server parameter (p. 35) to control system font usage. JavaScript

Use the disableSystemFonts server parameter (p. 35) to control system font usage. Node.js

Use the disableSystemFonts server parameter (p. 35) to control system font usage. PHP

Use the disableSystemFonts server parameter (p. 35) to control system font usage. Python

Use the disableSystemFonts server parameter (p. 35) to control system font usage. Ruby

Use the disableSystemFonts server parameter (p. 35) to control system font usage. REST

config.setFontAliases(
 new Font().setFamily("My Font")
 .setSource("Arial"));

Java

config.FontAliases = new List
{
 new Font()
 {
 Family = "My Font"
 Source = "Arial"
 }
};

C#

config.fontAliases = [
 {
 family: "My Font",
 source: "Arial"
 }
];

JavaScript

config.fontAliases = [
 {
 family: "My Font",
 source: "Arial"
 }
];

Node.js

$config["fontAliases"] = array(
 array(
 "family" => "My Font",
 "source" => "Arial"
)
);

PHP

RealObjects PDFreactor Version 12.0.0 PDFreactor Web Service Manual

APPENDIX G: Code Samples for Other Languages

528

G.138 Fallback fonts
Back to main chapter (p. 200)

config['fontAliases'] = [
 {
 'family': 'My Font',
 'source': 'Arial'
 }
]

Python

config['fontAliases'] = [
 {
 'family': 'My Font',
 'source': 'Arial'
 }
]

Ruby

{ "fontAliases": [
 {
 "family": "My Font",
 "source": "Arial"
 }
]}

REST

config.setFontFallback("My Font", "Arial"); Java

config.FontFallback = new List<String> { "My Font", "Arial" }; C#

config.fontFallback = ["My Font", "Arial"]; JavaScript

config.fontFallback = ["My Font", "Arial"]; Node.js

$config["fontFallback"] = array("My Font", "Arial"); PHP

config['fontFallback'] = ["My Font", "Arial"] Python

config['fontFallback'] = ["My Font", "Arial"] Ruby

{ "fontFallback": ["My Font", "Arial"] } REST

www.pdfreactor.com

G.138 Fallback fonts

529

	Table of Contents
	1. Installation
	1.1 The PDFreactor Web Service
	1.1.1 PDFreactor Web Service Setup on Windows
	1.1.2 PDFreactor Web Service Setup on Linux / Unix
	Running PDFreactor on systems that support systemd
	Running PDFreactor as a System V Init Service
	Installing PDFreactor from a Tarball

	1.1.3 PDFreactor Web Service Setup on macOS

	1.2 The PDFreactor Preview Application
	1.3 Client Requirements

	2. Integration
	2.1 Basics
	2.1.1 Creating a PDFreactor Instance
	2.1.2 Configuring the Conversion
	2.1.3 Specifying the Input Document
	2.1.4 Starting the Conversion
	2.1.5 Processing the Result

	2.2 Memory
	2.2.1 Parallel Conversions
	2.2.2 Extensive Conversions
	2.2.3 Analyzing Memory Consumption

	2.3 Using the PDFreactor Web Service
	2.3.1 Synchronous Conversions
	2.3.2 Asynchronous Conversions
	Starting an Asynchronous Conversion
	Checking the Progress
	Retrieving the Document
	Deleting the Document

	2.3.3 Streaming Conversions
	Retrieving the Conversion Metadata

	2.3.4 Using the REST API
	RESTful Conversion API
	RESTful Monitoring API

	2.3.5 Asset Packages
	2.3.6 Prioritizing Jobs
	2.3.7 Downloading Document Bundles
	2.3.8 Using a Client
	Using PHP
	Using .NET
	Using Python
	Using Ruby
	Using Java
	Using JavaScript/Node.js
	Using the Python Command Line

	2.3.9 Custom Headers and Cookies
	2.3.10 Web Service Configuration
	Increasing Memory
	Increasing/Limiting Concurrent Conversions
	Customizing the Server Configuration
	Asynchronous Temporary Document Storage Configuration

	2.3.11 Accessing the Log
	2.3.12 Cluster Configuration
	Load Balancing
	Health Check

	2.3.13 Server Parameters
	2.3.14 Callbacks
	2.3.15 Monitoring
	Monitor the Health of an Instance
	Advanced Monitoring

	2.3.16 JSON Configuration Files

	2.4 API Comparison
	2.4.1 What API Method Should I Use?

	2.5 Logging
	2.5.1 Conversion Name
	2.5.2 Log Capacity

	2.6 License Key
	2.6.1 Evaluation Mode
	2.6.2 Receiving a License Key
	2.6.3 Setting the License Key
	2.6.4 Setting the License Key in the Web Service

	2.7 Observing Document Content
	2.7.1 Exceeding Content
	2.7.2 Missing Resources
	2.7.3 Connections

	2.8 Error Policies
	2.9 Limiting Conversion Times
	2.10 Development and Debugging Tools
	2.10.1 Debug Settings
	Controlling Debug Behavior
	Debug File Dump
	Attaching Debug Files Manually

	2.10.2 Inspectable Documents

	2.11 Docker Configuration
	2.11.1 Java Options
	2.11.2 Additional Configuration

	3. Security
	3.1 SSL Certificate Validation
	3.2 Connection Security
	3.2.1 Trusted and Untrusted Contexts
	Untrusted Clients
	Author API Overrides

	3.2.2 Automatic Redirects
	3.2.3 Connection Rules
	Data URIs and Blobs
	JAR URLs

	3.2.4 Default Security Behavior
	3.2.5 Non-local File URLs

	3.3 External XML Parser Resources
	3.4 Controlling Client Access
	3.4.1 Restricting Service Access
	3.4.2 Restricting API Access
	3.4.3 Enabling Administrative Access

	3.5 Hiding Version Information

	4. Input Formats
	4.1 HTML + CSS
	4.1.1 Legacy XHTML
	4.1.2 HTML + JavaScript

	4.2 XML + CSS
	4.2.1 XML + XSLT

	4.3 Encoding
	4.4 CSS Validation
	4.5 Quirks Mode
	4.6 Resource Loading
	4.6.1 Network Settings
	Connect and Read Timeout
	HTTPS
	Authentication
	HTTP Request Headers
	Cookies

	4.6.2 URL Rewrites

	4.7 Additional Resources
	4.7.1 User Style Sheets
	4.7.2 Integration Style Sheets
	4.7.3 User Scripts
	4.7.4 XSLT Style Sheets

	4.8 Colors
	4.8.1 Color Keywords
	4.8.2 RGB Colors
	4.8.3 RGBA Colors
	4.8.4 CMYK Colors
	4.8.5 HSL Colors
	4.8.6 Spot Colors
	4.8.7 Color Conversion

	4.9 Compound Formats
	4.9.1 Images
	Save Memory Mode

	4.9.2 SVG
	4.9.3 MathML
	4.9.4 Barcodes
	Defining the Content
	Automatically resolving relative URLs
	Customizing the barcode color
	Adjusting the barcode size
	Adjusting human readable text

	4.9.5 Object and Embed
	4.9.6 Form Controls
	4.9.7 iframes
	4.9.8 Canvas Element
	4.9.9 PDF Pages as Images
	4.9.10 Filters and Shadows

	4.10 JavaScript
	4.10.1 Limitations of Browser-Like Behavior
	4.10.2 JavaScript Engines
	4.10.3 Third-Party JavaScript Libraries and Frameworks
	4.10.4 Proprietary Access to Layout Information
	Descriptions
	DOMRects
	Ranges

	4.10.5 PDF Output Options
	4.10.6 Exporting Data From JavaScript
	4.10.7 Timeouts and Limits
	4.10.8 awesomizr.js

	5. Output Formats
	5.1 PDF Output
	5.1.1 Bookmarks
	5.1.2 Links
	5.1.3 Metadata
	5.1.4 Interactive PDF Forms
	5.1.5 Tagged PDF
	5.1.6 PDF/A Conformance
	PDF/A-1 alpha channels
	Validation

	5.1.7 PDF/UA Conformance
	5.1.8 PDF/X Conformance
	5.1.9 ICC Profiles and Output Intents
	5.1.10 Color Space Conversion
	5.1.11 Print Dialog Prompt
	5.1.12 Compression
	Image Compression
	Structure Optimization

	5.1.13 Encryption and Restrictions
	5.1.14 Viewer Preferences
	5.1.15 Merging PDFs
	5.1.16 Digital Signing
	5.1.17 Font Embedding
	5.1.18 Overprinting
	5.1.19 Attachments
	Attaching Debug Files

	5.1.20 PDF Script
	5.1.21 Preview Images
	5.1.22 Custom XMP

	5.2 Image Output
	5.2.1 Selecting a page
	5.2.2 Converting a Document Into Multiple Images
	5.2.3 Continuous Output
	5.2.4 Grayscale Image
	5.2.5 Color Space Conversion

	6. Layout Documents
	6.1 Pagination
	6.1.1 Layout at Breaks
	Between Blocks
	Inside Blocks
	Images

	6.1.2 Page Selectors
	Nth Page
	Last Page

	6.1.3 Page Size & Orientation
	6.1.4 Named Pages
	Page Groups

	6.2 Breaking Text
	6.2.1 Automatic Hyphenation
	6.2.2 Widows & Orphans
	6.2.3 Customizing Line Breaks

	6.3 Generated Content
	6.3.1 Generated Text
	6.3.2 Generated Images
	6.3.3 Counters

	6.4 Page Header & Footer
	6.4.1 Header, Footer & Page Side Boxes
	6.4.2 Running Elements
	6.4.3 Running Documents

	6.5 Generated Content for Pages
	6.5.1 Page Counters
	6.5.2 Named Strings
	6.5.3 Cross-references
	Counter Cross-references
	Text Cross-references

	6.5.4 Footnotes
	6.5.5 Sidenotes
	Modifying Alignment
	Calls and Markers
	The Sidenote Area

	6.5.6 Continuation Markers

	6.6 Transforms
	6.6.1 Reduce Table Width with Rotated Table Headers

	6.7 Multi-column Layout
	6.8 Line Grids and Snapping
	6.9 Region Layout
	6.9.1 Adding Regions to Region Chains
	6.9.2 Adding Content to a Named Flow
	6.9.3 Region Generated Content

	6.10 Controlling Breaks
	6.10.1 Breaking Around Boxes
	6.10.2 Avoid Breaking Inside Boxes
	6.10.3 Adaptive Page Breaks

	6.11 Page Floats
	6.12 Print Specific Page Properties
	6.12.1 PDF Page Boxes
	TrimBox
	MediaBox
	BleedBox
	CropBox
	ArtBox

	6.12.2 Printer Marks

	6.13 Positioning Content Relative to Page Boxes
	6.14 Leaders
	6.15 Table of Contents
	6.16 Shrink-to-Fit
	6.16.1 Scaling Pixel Lengths
	6.16.2 Scaling Down Page Content
	6.16.3 Scaling Down Text
	Vertical Position

	6.16.4 Fit Wide Tables

	6.17 Page Order
	6.17.1 Merge Mode Arrange

	6.18 Pages Per Sheet
	6.19 Booklet
	6.20 Filling in Pages
	6.21 Pixels per Inch
	6.22 Internationalization
	6.22.1 Languages
	6.22.2 Right-to-Left
	6.22.3 Text Direction Dependent Layouts

	6.23 Media Queries
	6.23.1 Media Types
	6.23.2 Media Features

	6.24 Document-Specific Preferences
	6.25 Converting Large Documents
	6.25.1 Segmentation
	6.25.2 Fast Tables
	6.25.3 Recommendation for Large Documents

	6.26 Annotations
	6.26.1 Comments
	6.26.2 Change Bars

	7. Accessibility
	7.1 Automatic PDF Tagging
	7.2 Authoring Requirements
	7.3 Controlling Tagging with WAI-ARIA
	7.3.1 Roles
	7.3.2 States and Properties
	7.3.3 Accessible Name and Description
	7.3.4 WAI-ARIA-based Tagging Examples

	7.4 Controlling Tagging with CSS
	7.4.1 Overriding or Configuring Tag Type Determination
	Series of Examples for Safely Overriding Tag Types

	7.4.2 Overriding or Specifying Attributes

	7.5 Creating Tagged PDFs from Non-HTML Input Documents

	8. User Agent
	8.1 Security Settings
	8.2 Network Settings
	8.3 HTTP Cache
	8.4 PDFreactor Web Service

	APPENDIX A: Fonts
	A.1 Font Sources
	A.1.1 Core Fonts Pack
	A.1.2 System and JVM Font Directories
	A.1.3 Additional Fonts & Font Directories
	A.1.4 CSS Defined Fonts

	A.2 The Font Cache Mechanism
	A.2.1 Font Cache Lifecycle
	A.2.2 Controlling the Font Registration and Caching Mechanism

	A.3 Font Matching
	A.3.1 Matching Generic Font Families
	A.3.2 Font Alias Names
	A.3.3 Automatic Font Fallback

	APPENDIX B: JavaScript Objects and Types
	B.1 Objects
	B.2 Proprietary Types

	APPENDIX C: PDFreactor Web Service Server Configuration
	APPENDIX D: Supported Barcode Types and Properties
	APPENDIX E: CSS Support
	E.1 Default Style Rules
	E.2 CSS Attribute Selector
	E.3 Supported Page Size Formats
	E.4 Supported Hyphenation Languages
	E.5 Supported length units
	E.6 CSS Color Keywords
	E.7 Counter and Ordered List Style Types
	E.8 Supported Values for Transliteration
	E.9 CSS Documentation
	E.9.1 Properties
	E.9.2 Functions
	E.9.3 Pseudo Classes
	For @page rules
	For elements

	E.9.4 Pseudo Elements
	E.9.5 At-Rules
	E.9.6 Types

	APPENDIX F: JavaScript Support
	APPENDIX G: Code Samples for Other Languages
	G.1 Creating a PDFreactor instance
	G.2 Configuration properties
	G.3 Source document use case: local document
	G.4 Source document use case: remote document
	G.5 Source document use case: rendered template
	G.6 Retrieving the converted document from a result object
	G.7 Starting an synchronous conversion
	G.8 Starting an asynchronous conversion
	G.9 Checking the progress
	G.10 Retrieving the document
	G.11 Keeping the document
	G.12 Deleting the document
	G.13 Streaming conversion
	G.14 Retrieving the document's metadata
	G.15 Setting custom headers and cookies
	G.16 Setting the service URL
	G.17 Setting load balancer sticky cookie
	G.18 Adding a ping
	G.19 Adding a progress notifier
	G.20 Checking the health using a client
	G.21 Setting the log level
	G.22 Retrieving the logs of a conversion
	G.23 Enable logging
	G.24 Setting the log capacity
	G.25 Setting the license key
	G.26 Ensure PDF has no eval notices
	G.27 Content observer
	G.28 Observe overflowing boxes
	G.29 Retrieving the exceeding contents from a result object
	G.30 Observe missing resources
	G.31 Retrieving the missing resources from a result object
	G.32 Observe connections
	G.33 Retrieving the connections from a result object
	G.34 Error policies
	G.35 Setting the log level
	G.36 Debug settings
	G.37 Debug file dump
	G.38 Inspectable Documents
	G.39 Lenient HTTPS resource loading
	G.40 Untrusted API context
	G.41 Allow author API overrides
	G.42 Automatic redirects
	G.43 Allowing or denying connections
	G.44 Content from untrusted sources
	G.45 Content from untrusted sources
	G.46 Allowing file system access
	G.47 Allowing non-local file URLs
	G.48 Enable loading of external XML parser resources
	G.49 API keys
	G.50 Disabling Version Disclosure
	G.51 Forcing HTML document processing
	G.52 Forcing legacy XHTML document processing
	G.53 Using TagSoup cleanup
	G.54 Forcing XML document processing
	G.55 Transforming XML to HTML
	G.56 Using UTF-8 encoding
	G.57 Disabling CSS validation
	G.58 Using case-insensitive CSS class selectors
	G.59 Base URL
	G.60 File URL as base URL
	G.61 Resource request timeout
	G.62 Authentication credentials
	G.63 Custom user agent header
	G.64 Session cookies
	G.65 Authentication credentials
	G.66 Authentication credentials
	G.67 User style sheets
	G.68 Integration style sheets
	G.69 User scripts
	G.70 XSLT style sheets
	G.71 Color spaces
	G.72 Processing large high-res images
	G.73 Add scripts manually
	G.74 Disable JavaScript processing
	G.75 Changing the JavaScript engine to Rhino
	G.76 PDF metadata
	G.77 Retrieving the JavaScript export from a result object
	G.78 Limiting JavaScript processing time
	G.79 Create ToC with Awesomizr
	G.80 Adding bookmarks
	G.81 Adding links
	G.82 Override metadata
	G.83 Custom document properties
	G.84 Adding tags
	G.85 PDF/A3-a conformance
	G.86 Ignoring image alpha channels
	G.87 Validating conformance
	G.88 PDF/A + PDF/UA conformance
	G.89 PDF/UA conformance
	G.90 PDF/A3-a + PDF/UA conformance
	G.91 PDF/X4 conformance
	G.92 Output intent
	G.93 Color space conversion to CMYK
	G.94 Creating web version
	G.95 Print dialog prompt
	G.96 Disabling automatic structural optimization
	G.97 Encryption
	G.98 User and owner passwords
	G.99 Viewer preferences
	G.100 Merging documents
	G.101 Appending documents
	G.102 Arranging merged documents
	G.103 Overlaying documents
	G.104 Repeating merged documents
	G.105 Configuring the aspect ratio for overlay pages
	G.106 Configuring the aspect ratio for overlay pages
	G.107 Signing PDFs
	G.108 Disabling font embedding
	G.109 Overprint
	G.110 Adding attachments
	G.111 Attachments
	G.112 PDF script actions
	G.113 Adding preview images
	G.114 Attaching a custom XMP
	G.115 Image output
	G.116 Page order
	G.117 Multi-image output
	G.118 Continuous output
	G.119 Forcing grayscale image output
	G.120 Color space conversion of output images to CMYK
	G.121 Shrink-to-fit
	G.122 Custom page order
	G.123 Arranging documents
	G.124 Pages per sheet
	G.125 Booklet
	G.126 Custom pixels per inch
	G.127 Document language
	G.128 Media types
	G.129 Media feature values
	G.130 Enabling Segmentation
	G.131 Adding comments
	G.132 Custom font directories
	G.133 Custom fonts
	G.134 Enabling file system font cache
	G.135 Configuring font cache location
	G.136 Disabling system fonts
	G.137 Font aliases
	G.138 Fallback fonts

